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Complexity reduction of piecewise affine linear parameter varying
controllers

Fernando D. Bianchi a, Ricardo S. Sánchez-Peña a

aInstituto Tecnológico Buenos Aires (ITBA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad
Autónoma de Buenos Aires, Argentina

Abstract

This work analyzes the design and implementation of piecewise affine (PWA) Linear Parameter Varying (LPV) controllers. PWA-LPV
models can be employed to describe complex nonlinear or time-varying systems with the aim of control design. The complexity of a
PWA-LPV controller depends on the number of local models used to describe the plant. Here we propose a methodology to reduce
this number and thus simplify the design and implementation complexity of the resulting controller without a significant performance
degradation. The methodology is illustrated by an academic example and a more realistic wind turbine control application.

Key words: Piecewise affine (PWA), linear parameter varying (LPV), gain scheduling (GS), implementation complexity.

1 Introduction

Gain scheduling (GS) is a popular tool to address the con-
trol of nonlinear and time-varying systems. A GS strategy
consists of a set of linear controllers parameterized by the
operating conditions (Åström & Wittenmark, 2008). The lin-
ear parameter varying (LPV) framework provides more ad-
equate and systematic design tools (Apkarian, Gahinet &
Becker, 1995; Becker & Packard, 1994; Wu, Yang, Packard
& Becker, 1996; Apkarian & Adams, 1998; Scherer, 2001).
In particular, the design in the GS-LPV approach is formu-
lated as a convex optimization problem in which robust con-
trol concepts can be included naturally in order to consider
model approximation errors. GS-LPV techniques have been
used in a large number of applications. An extensive list can
be found in (Hoffmann & Werner, 2015) and some more re-
cent applications in e.g. (Morera-Torres, Ocampo-Martinez
& Bianchi, 2022; Häberle, Fisher, Prieto-Araujo & Dörfler,
2022), among others.

In GS-LPV control design, the plant is described as a lin-
ear model parameterized by exogenous variables (schedul-
ing variables) that take values in a known parameter space.
Several approaches are available to fulfill this task depending
on the particular plant. For instance, an LPV model can be
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obtained from nonlinear dynamics expressions by a change
of variables or Jacobian linearization (Mohammadpour &
Scherer, 2012; Rotondo, 2018). Another modeling strategy
is the piecewise affine (PWA) LPV representation introduced
by Lim & How (2002, 2003). A PWA-LPV model is ob-
tained from a set of linear models corresponding to a grid
of frozen parameter values or operating points, and an affine
interpolation for intermediate points. PWA-LPV modeling
offers a systematic methodology and may be suitable to em-
bed highly complex nonlinear plants in LPV descriptions,
especially when analytic expressions are too complex or the
model is based on look-up-tables. In general, the model ap-
proximation improves with the number of linear models.

The particular parameter dependence of the LPV model de-
termines the computational complexity of the control design.
In case of affine and PWA parameter dependent plants, the
design reduces to solving a convex optimization problem
with a finite set of decision variables and constraints (Ap-
karian et al., 1995). The number of these decision variables
and constraints is related to the number of vertices in a con-
vex hull covering the parameter space or to the number of
points in the grid in case of PWA-LPV models. The com-
plexity of controller implementation, i.e. the mathematical
operations and information storage necessary for computing
the control law in real-time, is also connected to the number
of these vertices or points.

In case of LPV plants with a general parameter dependence,
the parameter space is sampled in order to obtain a prob-
lem with a finite number of variables and constraints (Wu
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et al., 1996; Apkarian & Adams, 1998). In this approach,
known as gridding, the closed-loop stability and perfor-
mance is only checked at a discrete set of parameter val-
ues. Hence, the denser the grid of points, the more accurate
is the stability and performance estimation. Unfortunately,
the burden of the controller design also increases with the
grid density. As an alternative to avoid gridding, a general
LPV plant can be covered with an affine LPV model at the
expense of a conservative design (Kwiatkowski & Werner,
2008). A number of methodologies have been proposed to
improve the model fitting by adding auxiliary parameters
and tightening the parameter space to a convex hull with
additional vertices (Hoffmann, Hashemi, Abbas & Werner,
2014; Sadeghzadeh, Sharif & Tóth, 2020; Sadeghzadeh &
Tóth, 2023; Abbas, Tóth, Petreczky, Meskin, Mohammad-
pour Velni & Koelewijn, 2021; Kapsalis, Sename, Milanes
& Molina, 2022). Although these methods also aim to deter-
mine models with low number of auxiliary parameters and
vertices, the resulting representations still might lead to con-
trollers with a significant number of variables, and difficult
to design and/or implement.

As the complexity is in some degree inherited from the plant
dynamics representation, the application of LPV techniques
in high-order nonlinear and time-varying systems is still
hard. This may limit the plants in which LPV techniques
can be successfully used to design GS controllers. Neverthe-
less, in some cases, a dynamic model with apparently com-
plex nonlinear expressions can be successfully controlled
with relatively simple controllers (Sánchez-Peña & Bianchi,
2012; Belikov, Kotta & Tõnso, 2014). Considering this fact,
it appears interesting to seek simpler LPV models leading to
low complexity control design and implementation without
a significant performance degradation. In this vein, Bianchi
& Sánchez-Peña (2022) proposed a methodology aimed at
simplifying the LPV model expressions and thus the con-
troller design and implementation. The gridding is still nec-
essary but the implementation complexity does not depend
on the density of the grid. The present article focuses on
the GS control design for PWA-LPV plants. The objective
is to find a methodology for reducing the number of linear
models used in the system description and thus simplifying
the control design and implementation complexity. The pro-
posed methodology analyzes the effects on the closed-loop
stability and performance to determine a less dense grid of
points to design a reduced-complexity PWA-LPV controller.

The article is organized as follows. Section 2 presents a
brief summary on PWA-LPV modeling and control design.
Section 3 introduces the main result, a methodology to re-
duce the complexity of the design and implementation of
PWA-LPV controllers. Then, the effectiveness of the pro-
posed methodology is analyzed with two examples: an aca-
demic one in which the model simplification can be easily
shown (Section 4), and a practical application in the control
of a wind turbine, a highly complex nonlinear system (Sec-
tion 5). Finally, some conclusions are drawn in Section 6.

Notation: The following notation will be used:
[
P + PT RT

R S

]
=

[
P + (⋆) ⋆

R S

]
.

For a matrix Q ∈ Rn×m, σ̄(Q) denotes its maximum sin-
gular value. For a real symmetric matrix Q, Q > 0 and
Q ≥ 0 stand for positive definite and positive semi-definite,
respectively, and Q < 0 and Q ≤ 0 for negative definite and
negative semi-definite, respectively. The identity matrix of
dimension n× n is denoted as In.

2 PWA-LPV modeling and control design

Consider the following LPV system

G(θ) :





ẋ = A(θ)x+B1(θ)w +B2u,

z = C1(θ)x+D11(θ)w +D12u,

y = C2x+D21w,

(1)

where x ∈ Rnx is the state vector, w ∈ Rnw is a distur-
bance, u ∈ Rnu is the control input, z ∈ Rnz is an output
related to performance specifications, and y ∈ Rny is the
measured output. The time-varying parameter θ is assumed
to be measured in real-time and taking values in a compact
set P ⊂ Rnp .

The parameter dependent matrices in (1) are assumed to be
PWA functions with the following expression

[
A(θ) B1(θ)

C1(θ) D11(θ)

]
=

nv∑

i=1

αi(θ)

[
Ai B1,i

C1,i D11,i

]
, (2)

where Ai, B1,i, C1,i and D11,i (i = 1, . . . , nv) are constant
matrices.

Let Pg = {θ1, . . . , θnv} be a grid of points with P its
convex hull. Using triangulation, the set P is split into a set
of simplices or subdivisions Sk (k = 1, . . . ,mv). Hence,
any point θ ∈ Sk can be expressed as a convex combination
of its nearest points or vertices of Sk, denoted as V(Sk).
That is,

θ =

nv∑

i=1

αiθ
i,

nv∑

i=1

αi = 1, and 0 ≤ αi ≤ 1, (3)

where αi = 0 for all θi /∈ V(Sk). The multipliers αi(θ)’s
in (2) are the weights of the convex decomposition (3) for
the particular value θ. The matrices Ai, B1,i, C1,i and D11,i

correspond to the values of the functions (2) evaluated at
θi ∈ Pg . Figure 1 illustrates the PWA representation of one
element [mij ] of matrix (2) for θ ∈ R.

The synthesis problem consists in finding an LPV controller

K(θ) :

{
ẋc = Ac(θ)xc +Bc(θ)y,

u = Cc(θ)xc +Dc(θ)y,
(4)
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Figure 1. Illustrative example of one element of the matrix (2),
the grid of points Pg and simplices S for a case of θ ∈ R. The
red line corresponds to the PWA interpolation based on the grid
Pg and the black line based on a grid Ps reduced according to
the affine parameter dependence of the system matrices.

that ensures closed-loop quadratic stability and

∥z∥2 ≤ γ∥w∥2, ∀ θ ∈ P. (5)

In the LPV framework, G(θ) in (1) is known as the gen-
eralized or augmented plant, which includes the weighting
functions used to establish the control specifications in the
synthesis procedure (Wu et al., 1996; Apkarian & Adams,
1998). The measured parameter θ is the scheduling variable
of the GS controller K(θ).

Following the procedure introduced in (Scherer, Gahinet &
Chilali, 1997), this design problem can be cast as a convex
optimization problem that minimizes γ subject to the fol-
lowing linear matrix inequalities (LMIs):

Π(X,Y, Â(θ), B̂(θ), Ĉ(θ), D̂(θ), γ) < 0, (6)
[
X Ins

Ins
Y

]
> 0, (7)

where Π(·) is given in (8), and the matrices X = XT ,
Y = YT , auxiliary matrix functions

[
Â(θ) B̂(θ)

Ĉ(θ) D̂(θ)

]
=

nv∑

i=1

αi(θ)

[
Âi B̂i

Ĉi D̂i

]
, (9)

and the scalar γ > 0 are decision variables to be found
(Apkarian & Adams, 1998). As the model and auxiliary ma-

trix functions are PWA functions of θ, the testing of LMIs
(6) and (7) at the points θi ∈ Pg holds for all θ ∈ P (Ap-
karian et al., 1995). Therefore, the controller design reduces
to finding matrices X, Y, Âi, B̂i, Ĉi, D̂i that minimize γ
subject to

Π(X,Y, Âi, B̂i, Ĉi, D̂i, γ) < 0, i = 1, . . . , nv, (10)
[
X Ins

Ins Y

]
> 0. (11)

Once the optimization problem is solved, the controller ma-
trices are computed from

Ac(θ) = N−1(Â(θ)−X(A(θ)−B2D̂(θ)C2)Y

− B̂(θ)C2Y −XB2Ĉ(θ))M−T , (12)

Bc(θ) = N−1(B̂(θ)−XB2D̂(θ)), (13)

Cc(θ) = (Ĉ(θ)− D̂(θ)C2Y)M−T , (14)

Dc(θ) = D̂(θ), (15)

where M and N are selected to satisfy I −XY = NMT .

Notice that the controller matrix functions (12)-(15) are also
PWA functions of the parameter θ and therefore they can
also be expressed as

[
Ac(θ) Bc(θ)

Cc(θ) Dc(θ)

]
=

nv∑

i=1

αi(θ)

[
Ac,i Bc,i

Cc,i Dc,i

]
, (16)

and αi according to (3).

The system description (1) can be seen as a particular case
of PWA-LPV systems introduced by Lim & How (2002).
Here, the plant and controller matrix functions are assumed
continuous and the Lyapunov functions constant 1 .

In case the PWA-LPV model is used to embed a nonlinear
plant in an LPV description, the matrices Ai, B1,i, C1,i, and
D11,i correspond to linearizations of the nonlinear plant at

1 These assumptions might limit the closed-loop performance in
same cases but ease the presentation of the proposed methodology.
The use of parameter dependent Lyapunov functions makes the
design and implementation more complex, but does not alter the
complexity reduction criterion introduced in the next section.

Π(X,Y, Â(θ), B̂(θ), Ĉ(θ), D̂(θ), γ) =


A(θ)Y +B2Ĉ(θ) + (⋆) ⋆ ⋆ ⋆

Â(θ) + (A(θ) +B2D̂(θ)C2)
T XA(θ) + B̂(θ)C2 + (⋆) ⋆ ⋆

(B1(θ) +B2D̂(θ)D21)
T (XB1(θ) + B̂(θ)D21)

T −γInw
⋆

C1(θ)Y +D12Ĉ(θ) C1(θ) +D12D̂(θ)C2 D11(θ) +D12D̂(θ)D21 −γInz




(8)
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points θi ∈ Pg . For instance, the set of LTI models may
come from numerical linearizations of well-validated and
high-fidelity simulation models. In these cases, it is difficult
to predict in which areas of the entire operating envelope
the system dynamics exhibits the most significant changes.
As a result, Pg is taken as a sufficiently dense and equally
spaced set of points in order to have a good approximation
of the nonlinear model for all θ ∈ P .

3 Low complexity LPV control design

The online computation of the control action u requires stor-
ing the set of nv matrices in (16), solving the convex de-
composition (3), and determining u from (4). Clearly, the
implementation complexity of the LPV controller given by
(16) depends on the number of points nv in the grid Pg .
The higher nv , the larger is the number of variables to be
stored and the more complex is the computation of the αi’s.
A large number of points in Pg also implies a higher com-
putational burden for the controller design as it increases the
number of decision variables and LMI constraints.

If the matrix function (2) exhibits an almost affine parameter
dependence in some areas of P , the PWA-LPV model can
be described with a smaller grid Ps resulting in a controller
with a simpler implementation. For instance, in Figure 1 the
black line is a PWA interpolation based on a reduced grid
Ps, which introduces only a small error in the values of
[mij ] as compared with the full grid interpolation based on
Pg (red line). For any point θ between θ8 and θ16, [mij ] can
be described by only one affine function with domain given
by the simplex Ŝ6 with vertices θ8 and θ16, instead of the
original PWA interpolation based on 8 affine functions cor-
responding to a grid of 9 points. Considering this fact, the
rest of this section presents a criteria to find a smaller grid
of points and a controller design to simplify the implemen-
tation.

3.1 Reduction of the parameter grid

The criterion for reducing the number of points in the pa-
rameter grid can be based on the linear dependency of the
matrices Ai, B1,i, C1,i, and D11,i. However, this criterion
does not clearly show the effect of using a smaller grid on
the closed-loop stability and performance as defined in (5).
For this reason, we will use the ideas introduced by Bianchi
& Sánchez-Peña (2022) to formulate such a criterion.

To this end, let us assume that the grid Pg is partitioned into
two sets Ps and Pr such that

Ps ∩ Pr = ∅, Ps ∪ Pr = Pg. (17)

The smaller set Ps contains the vertices of new simplices
Ŝh (h = 1, . . . ,ms and ms < mv), in which the matrix
function (2) presents an almost affine parameter dependence.
On the other hand, the set Pr includes the remaining points

that can be included in one of the new simplices Ŝh’s. The
aim is to find a controller described as a convex combination
of matrices Ac,j , Bc,j , Cc,j , and Dc,j (j = 1, . . . , ns and
ns < nv) only associated to the points in Ps. Following the
example in Figure 1, Ps = {θ1, θ2, θ3, θ4, θ6, θ8, θ16} and
Pr = {θ5, θ7, θ9, θ10, θ11, θ12, θ13, θ14, θ15}.

In order to select the points in Ps, we need to take into
account the effect on the closed-loop stability and perfor-
mance, when modifying the controller interpolation based
on the smaller grid Ps. That is, constraints (6)-(7) must hold
for all θ ∈ P with the new expressions of the controller
matrices:

[
Ac(θ) Bc(θ)

Cc(θ) Dc(θ)

]
=

ns∑

j=1

ηj(θ)

[
Ac,j Bc,j

Cc,j Dc,j

]
, (18)

and

θ =

ns∑

j=1

ηjθ
I(j),

ns∑

j=1

ηj = 1, and 0 ≤ ηj ≤ 1, (19)

where ηj = 0 for all θI(j) /∈ V(Ŝh), when θ ∈ Ŝh. The
symbol I(·) denotes the mapping from the indices of Ps to
the indices of Pg , for example, in Figure 1, I(5) will return
the index 6 as the fifth element in Ps is θ6.

As mentioned in Section 2, due to the fact that the system (1)
is assumed described by a PWA-LPV model, the constraint
(6) only needs to be imposed at the points θi ∈ Pg . For
all points θi ∈ Ps, the inequality (6) is the same as those
presented in Section 2, since these points are vertices of both
interpolations (the original (16) and the new (18)). On the
other hand, for all points θi ∈ Pr, this constraint changes
as a result of the new interpolation. At each θi ∈ Pr, the
controller matrices are given by

[
Ac(θ

i) Bc(θ
i)

Cc(θ
i) Dc(θ

i)

]
=

ns∑

j=1

ηj(θ
i)

[
Ac,j Bc,j

Cc,j Dc,j

]
(20)

and the closed-loop matrices with these new controller ma-
trices result:


A(θ

i) B(θi)
C(θi) D(θi)


 =




Ai 0 B1,i

0 0 0

C1,i 0 D11,i


+




B2Dc(θ
i)C2 B2Cc(θ

i) B2Dc(θ
i)D21

Bc(θ
i)C2 Ac(θ

i) Bc(θ
i)D21

D12Dc(θ
i)C2 D21Cc(θ

i) D12Dc(θ
i)D21


 . (21)

Then, applying the change of variable proposed by Scherer
et al. (1997), and using the same interpolation (18) for the
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auxiliary matrices (9), i.e.,
[
Â(θ) B̂(θ)

Ĉ(θ) D̂(θ)

]
=

ns∑

j=1

ηj(θ)

[
Âj B̂j

Ĉj D̂j

]
, (23)

inequality (6) becomes

Π(X,Y, Â(θi), B̂(θi), Ĉ(θi), D̂(θi), γ)+


0 ⋆ ⋆ ⋆

XAr,iY 0 ⋆ ⋆

0 0 0 ⋆

0 0 0 0




︸ ︷︷ ︸
Γ(X,Y)

< 0, (24)

for all θi ∈ Pr. The matrix Ar,i is defined as

Ar,i = Ai −A(θi), (25)

where

A(θi) =

ns∑

j=1

ηj(θ
i)AI(j) (26)

and the ηj(θi)’s are computed according to (19). The matrix
Ar,i represents the error between the matrix Ai and the
approximation A(θi) using the interpolation (26).

Comparing (10) and (24), it can be seen that the term
Γ(X,Y) is the additional restriction the new controller
must satisfy to ensure closed-loop stability and performance.
Then, considering the fact:

σ̄(XAr,iY) ≤ σ̄(X)σ̄(Ar,i)σ̄(Y),

the effect of the new approximated interpolation can be con-
nected with the maximum singular value of the matrices
Ar,i. If they are close to zero, the interpolation will not intro-
duce a significant effect on the closed-loop behavior. Taken
this fact into account, the following value

ν(Ar,i, Ai) =
σ̄(Ar,i)

σ̄(Ai)

can be proposed as a measure of the effect on stability and
performance introduced by the simplified interpolation (18).

The measure ν(Ar,i, Ai) can be used to formulate an algo-
rithm to determine the set partition (17). Algorithm 1 is an
implementation of such a partition strategy for θ ∈ R. The
algorithm starts with the first and third points in Pg and
checks if ν(Ar,2, A2) is lower than a tolerance ϵ. If so, θ2 is
excluded from Ps and the test is repeated using the vertices
θ1 and θ4. Otherwise, θ2 is included in Ps and the next test
is performed using θ2 and θ4. The algorithm continues until
the last point in Pg is tested. For higher parameter dimen-
sions, the nonuniform grid can be obtained with partition al-
gorithms as those used to find nonuniform meshes (de Berg,
Cheong, van Kreveld & Overmars, 2008). The partition of
the parameter space is performed starting with the largest

simplices corresponding to the convex hull of Pg and it-
eratively splitting them into smaller ones, if the condition
ν(Ar,i, Ai) < ϵ is not satisfied.

Algorithm 1 Reduction of parameter set
Ps ← {θ1}, j ← 1
for i = 2 to nv − 1 do

Compute ϕ such that θi = ϕ θj + (1− ϕ)θi+1

Ar,i = Ai − (ϕAj + (1− ϕ)Ai+1)
Compute δ = ν(Ar,i, Ai)
if δ > ϵ then
j ← i
Ps ← Ps ∪ {θi}

end if
end for

3.2 Control design based on a smaller grid

Once the smaller grid Ps is determined using the measure
ν(Ar,i, Ai), two design options are available:

- Method 1: The controller is designed using a standard
gridding strategy (Apkarian & Adams, 1998; Wu et al.,
1996) as presented in Section 2. That is, the controller is
obtained solving the optimization problem with the LMIs
(6) and (7) over the smaller setPs, ignoring the constraints
associated to the points in Pr. With the resulting con-
troller, closed-loop stability and performance is checked
in the denser grid Pg . If the error introduced by the new
interpolation is small, this controller in general will sat-
isfy these conditions.

- Method 2: The controller is designed adapting the proce-
dures proposed by Bianchi & Sánchez-Peña (2022) in or-
der to consider the interpolation errors as it will be shown
next.

Both resulting controllers will be similar in terms of imple-
mentation complexity. However, Method 1 involves fewer
LMI constraints but might require to recompute the partition
(17). On the other hand, the second option produces a con-
troller that ensures stability and performance in all θi ∈ Pg

for a given interpolation partition, at the expense of a more
complex design optimization problem with more constraints
and a possible conservative design.

More concretely, Method 2 aims to find the controller con-
sidering the additional term Γ(X,Y) in (24) arisen from
the new interpolation. However, this term Γ(X,Y) is non-
linear and the matrix inequality (24) is not an LMI. As a
consequence, the control design is a non-convex optimiza-
tion problem. In (Bianchi & Sánchez-Peña, 2022), two pro-
cedures are proposed to approximately solve this problem.
Here, we adapt Procedure 1 to the present synthesis prob-
lem, the other procedure can be adapted using similar argu-
ments. The main idea consists in considering the fact that
the matrices Ar,i’s are usually sparse with rank na ≤ nx

5



and they can be decomposed using singular values as:

Ar,i =
[
U1,i U2,i

] [Σi 0

0 0

][
V T
1,i

V T
2,i

]
= EiF

T
i ,

where Ei = U1,iΣ
1/2
i , Fi = V1,iΣ

1/2
i , and Σi ∈ Rna . Then,

the following inequality holds

σ̄(XAr,iY) ≤ σ̄(XEi)σ̄(YFi).

Let us introduce the bounds εx and εy , such that

σ̄(XEi)
2 ≤ εx, σ̄(YFi)

2 ≤ εy.

With these definitions, the following procedure can be used
to find a simpler PWA-LPV controller for the model (1) that
ensures quadratic stability and the performance criterion (5).

Procedure 1 Given the partition (17), find symmetric matri-
ces X and Y, matrices Âj , B̂j , Ĉj and D̂j (j = 1, . . . , ns)
according to (9), and positive scalars γ, εx εy that minimize

γ + q(εx + εy)

subject to:

Π(X,Y, Â(θi), B̂(θi), Ĉ(θi), D̂(θi), γ) < 0, i = 1, . . . , nv[
Ins

XEJ (ℓ)

ET
J (ℓ)X Ina

εx

]
> 0, ℓ = 1, . . . , nr

[
Ins

YFJ (ℓ)

FT
J (ℓ)Y Inaεy

]
> 0,

[
X Ins

Ins
Y

]
> 0,

for a given weight q > 0, where J (·) denotes the mapping
from the indices ofPr to the indices ofPg , and nr = nv−ns.
Check if there exists a γ such that, with the obtained vari-
ables X, Y, Âj , B̂j , Ĉj and D̂j , the condition (24) is sat-
isfied, otherwise increase q and repeat the design. ■

3.3 Selection of tolerance ϵ

The tolerance ϵ used in Algorithm 1 to find a smaller grid is a
result of a trade-off between implementation complexity, and
stability and performance degradation. As a starting point,
the tolerance can be set high enough to achieve a significant
reduction in the number of points. Then, if the stability and
performance degradation results unacceptable, the tolerance
should be decreased and a new reduced grid determined in
order to find a more suitable controller.

4 Academic Example

In order to illustrate the procedure proposed in the previous
section, consider the LPV system (1) with matrices:

A(θ) =




−50 0 0 0 0

50 k(θ) −50 0 0 0

0 p(θ) −p(θ) 0 0

0 0 −40 −5 0

0 0 0 0 −5000



,

B1 =
[
0 0 0 8 0

]T
, B2 =

[
5 0 0 0 64

]T
,

C1 =

[
0 0 −1 12.3750 0

0 0 0 0 −77.3438

]
,

C2 =
[
0 0 −5 0 64

]
,

D11 =
[
0.2 0

]T
, D12 =

[
0 1

]T
, D21 = 1,

p(θ) = 50 tanh (20(θ − 0.02)), and k(θ) = 1 +
20 (exp(−20 θ)− exp(−55 θ)). The parameter θ takes val-
ues in P = {θ ∈ R : 0 ≤ θ ≤ 1}. Let us assume that
only a set of nv = 41 system matrices are available for the
controller design. These matrices correspond to A(θ) eval-
uated at the points in the grid Pg = {0, 0.025, 0.05, . . . , 1}.
Figure 2 shows the parameter functions p(θ) and k(θ) and
three PWA interpolations corresponding to three grids. It
can be seen that a dense grid is necessary to capture the
change in p(θ) and k(θ) if an equally spaced set of points is
used. The top-plot in Figure 2 shows the interpolation ob-
tained with a sufficiently dense grid Pg . On the other hand,
the mid-plot presents an interpolation using a less dense
and equally spaced grid Pd = {0, 0.1, 0.2, . . . , 1}, with 11
points. Clearly, part of the changes in the parameter func-
tions are missed. Finally, the bottom-plot presents the inter-
polation using a less dense but not equally spaced grid Ps

obtained using Algorithm 1 presented in Section 3. This is
a more sensible grid of points.

Four controllers were designed using the three grid of pa-
rameter values shown in Figure 2. The controllers Kf (θ),
Kd(θ) and Ks,1(θ) were designed with the synthesis proce-
dure presented in Section 2 considering the grids Pg , Pd and
Ps, respectively. The controller Ks,2(θ) was designed with
Procedure 1 introduced in Section 3 and the grid Ps. The
optimization problems were solved using Yalmip (Löfberg,
2004) and Sedumi (Sturm, 1999). Table 1 lists the perfor-
mance levels γ obtained when each controller is designed.
The last column shows the analysis performance levels γa
that result from a subsequent closed-loop performance eval-
uation performed over the complete grid of 41 points. Note
that, in case of Kd, the performance level γ, computed in
the design, is lower than the one obtained for the controller
Kf . However, the analysis results infeasible as the controller
Kd is not able to ensure quadratic stability in the complete
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Figure 2. Academic example: Nonlinear functions p(θ) and k(θ)
and three interpolations corresponding to three parameter grids
Pg , Pd and Ps

Table 1
Academic example: Performance levels for each controller: γ ob-
tained from synthesis and γa from analysis

Ctrl. No. points γ γa

Kf 41 2.849 2.787

Kd 11 2.384 Infeasible

Ks,1 10 2.848 2.931

Ks,2 10 3.031 2.970

grid of points Pg . This is because this controller ignores the
changes in the plant dynamics at low values of θ. On the
other hand, controllers Ks,1 and Ks,2 ensure stability and
performance in all points in Pg . It can be observed that in
case of controller Ks,1, γa is slightly higher than γ because
its design only considers the points in Ps. However, the
corresponding closed-loop system is stable and the perfor-
mance level is acceptable, thanks to the proposed criterion
for the grid reduction. On the other hand, controller Ks,2 re-
sults slightly more conservative compared to Kf (higher γ),
but it provides a better closed-loop performance estimation
(γ > γa).

Closed-loop simulations can be seen in Figure 3 for the pa-
rameter trajectory indicated in the bottom-plot and a square-
wave as reference to be tracked (gray line). The tracking
performance achieved by each controller is in accordance to
the grid considered in each design. The baseline controller
Kf (θ) (blue line) achieves a rather uniform response for
all parameter range. Whereas the controllers Ks,1(θ) and
Ks,2(θ) exhibit a slight degradation in the tracking for pa-
rameter values around 0.4 and 0.1. This can be associated to
the small interpolation errors in this area of P . However, the
complexity in the design and implementation using set Ps

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (s)

0

0.5

1

-0.5

0

0.5

1

1.5

Figure 3. Academic example: Closed-loop simulations for a
square-wave reference (gray line) and a parameter trajectory
sweeping the entire set P

is much lower. The benefits of the proposed gridding pro-
cedures is clear from the closed-loop response comparison
with the design for set Pd. It has significant errors in lower
values of θ and the stability in this region is rather poor.

5 Wind turbine example

To illustrate the proposed procedure in a more realistic appli-
cation, the methodology is used in the control of the 5 MW
NREL baseline wind turbine (Jonkman, Butterfield, Musial
& Scott, 2009). Wind turbines are highly complex and flexi-
ble mechanical structures that required proper control strate-
gies to ensure a high efficient energy conversion and to limit
mechanical loads to guarantee a long useful life. Several
high fidelity simulators are available to evaluate the turbine
dynamic behavior, which also include baseline controllers
for a proper comparison with new proposals. (OpenFast 3.4,
2023) is one of these simulators, which is widely used to
compare new strategies 2 .

The control scheme is shown in Figure 4, similar to that
used in (Inthamoussou, Bianchi, De Battista & Mantz, 2014).
The wind turbine has three inputs: the wind speed v (dis-
turbance), the generator torque Tg,ref and the pitch angle β
(both used as control actions). As usual, the control strat-
egy is split into two main operating regions. When the wind
speed is below the rated value (11.4 m/s), the wind turbine
is controlled by the Tg,ref computed from a look-up-table
(see (Jonkman et al., 2009)) while the pitch angle remains
constant at 0◦. The aim is to maximize the energy capture.
When the wind speed is above the rated value, the pitch
controller regulates the generator speed Ωg around the rated
value Ωref = 1173.7 rpm and Tg,ref is kept at the rated
value 43.09 kNm to maintain the generated power at the
rated value of 5 MW. Additionally, the tower fore-after ve-
locity χ̇ is also fed-back to help reduce the fore-after tower

2 The wind turbine model and the baseline controller are available
at https://github.com/OpenFAST/openfast
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Figure 4. Control scheme used in the wind turbine example

Figure 5. Grids of points used in the wind turbine PWA-LPV
models

bending. The anti-windup (AW) scheme ensures a suitable
transition from low- to high-speed operation (Inthamoussou
et al., 2014).

The proposed methodology is employed to design the
pitch controller. The set of linear models were obtained
from the linearization tool included in OpenFast consid-
ering only the degrees of freedom (DOF) involved in the
input-output map corresponding to the control scheme, i.e.,
drive-train rotational-flexibility, generator, and 1st fore-aft
tower bending-mode. The model was linearized at 19 wind
speeds vop between 11.4 and 25 m/s, assuming the tur-
bine works at rated conditions (Ωg = 1173.7 rpm and
Tg,ref = 43.09 kNm). As the wind speed experienced by the
turbine rotor is not available for the controller and there ex-
ists a one-to-one mapping between vop and βop, the models
are parameterized by the latter variable. Hence, the resulting
PWA-LPV controller uses βop as scheduling parameter θ.
The grid of points θi used in the definition of the PWA-LPV
model (1) is shown in Figure 5 (blue square markers). No-
tice that in this case, the points in Pg are not equally spaced
as they result from computing the operating point associated
to each vop.

The design setup defining the augmented plant G(θ) is
shown in Figure 6, where

M(s) =

[
1/s 0

0 5/(s2 + 0.5s+ 2.12)

]
, We(s) = 0.01,

Wu(s) = 0.1
s+ 1

s/100 + 1
, Wz(s) = 1.

Using the multi-channel framework introduced in (Scherer
et al., 1997), the specifications are expressed as minimizing

γ = ∥T1∥2 + ∥T2∥2, (27)

where T1 denotes the mapping from w to z2, T2 from Ωref

Gp(θ)
β

K(θ)

K̃(θ)M(s)

θ

Ωref

−
Ωg

−
0 χ̇

Wu(s)

Wz(s)

We(s)

w

u

y

z1

z2

Figure 6. Control design setup for the wind turbine example

to z1, and ∥ · ∥2 the L2 induced norm. The first term in
(27) aims to limit the pitch activity in high frequencies to
increase robustness. The second term seeks to minimize the
generator speed error in low frequencies and attenuate vi-
brations in the fore-after bending mode. The application of
Algorithm 1 with a tolerance ϵ = 10−4 to the augmented
plant indicates that the set Pg can be reduced to the set Ps

shown in Figure 5 (red markers) with only 3 points. This is
a significant complexity reduction that is difficult to observe
directly from the set of linear models. With these grids, two
controllers were designed: Kf (θ) based on the complete
grid Pg and Ks(θ) based on the smaller grid Ps.

The controllers were evaluated under two scenarios taken
from the IEC 61400-1 standard using OpenFast and the
model with all DOFs corresponding to the 5 MW NREL
wind turbine. The first corresponds to a design load case
(DLC) 1.1, the wind speed is a normal turbulent model pro-
file created with TurbSim for a mean wind speed of 17 m/s
and turbulence characteristics B. The simulation results are
presented in Figure 7. The wind speed profile can be seen in
the bottom plot. In the other plots, the generator speed Ωg ,
the pitch angle β and the tower fore-aft displacement χ are
presented. The gray lines correspond to the closed-loop re-
sponses with the gain-scheduled PI controller Kb introduced
in (Jonkman et al., 2009), the blue lines to the controller Kf

and the red lines to the controller Ks. It can be seen that
the latter controller produces a quite similar response with
a much simpler controller, both from the design and imple-
mentation standpoints.

The second scenario considered was a DLC 2.3 using an ex-
treme operating gust (EOG) wind speed profile. The closed-
loop responses for the three controllers can be observed in
Figure 8. The wind speed in the x-direction is shown in the
bottom plot. As in the previous figure, the gray lines corre-
sponds to the responses for the baseline controller Kb, the
blue lines for Kf and the red lines for Ks. Also in this
case, both LPV controllers lead to similar behaviors, indi-
cating that the proposed procedure is able to simplify the
controller implementation and design without a significant
performance degradation.

It is worthy to remark that the use of the proposed method-
ology does not require a control-oriented model for the con-
troller design. This is performed directly from the models
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Figure 7. Closed-loop simulations for three controllers using a
fully detailed 5 MW NREL onshore wind turbine model under a
DLC 1.1 scenario.

produced by OpenFast. This avoids a time consuming model
validation needed in other standard control designs.

6 Conclusions

This article presents a novel methodology to reduce the
design and implementation complexity of PWA-LPV con-
trollers. This type of controllers is an attractive option to deal
with the control of complex nonlinear systems, especially
for those based on look-up-tables or too complex mathemat-
ical expressions. PWA-LPV systems are described by a set
of local linear models and the number of these models af-
fect the controller design and implementation. The proposed
methodology allows us to find a smaller set of local mod-
els that ensures a suitable closed-loop performance. A con-
troller based on a PWA-LPV approximation cannot guaran-
tee closed-loop stability of the nonlinear model from which
it originates. However, the proper selection of the local mod-
els along with robustness constraints, easily included in the
design, allows us to find a controller with a reasonable im-
plementation and design complexity that suitably works in
practice. This point is clearly shown with the wind turbine
control application presented in the last section, in which the
methodology is able to find a much simpler GS controller
achieving a similar closed-loop response to the one based

Figure 8. Closed-loop simulations for three controllers using a
fully detailed 5 MW NREL onshore wind turbine model in under a
DLC 2.3 scenario. The blue (Kf ) and red (Ks) lines are practically
coincident.

on a larger set of local models.
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