Post-print version:

PREDICTIVE CONTROL FOR MODE-SWITCHING OF REVERSIBLE
SOLID OXIDE CELLS IN MICROGRIDS BASED ON HYDROGEN
AND ELECTRICITY MARKETS

H. del Pozo Gonzalez, and F.D. Bianchi, and M. Torrell, and L. Bernadet,
and J. Eichman, and A. Tarancén, and J.L. Dominguez-Garcia, and O.
Gomis-Bellmunt

This work has been published in International Journal of Hydrogen
Energy:

H. del Pozo Gonzalez, and F.D. Bianchi, and M. Torrell, and L. Bernadet, and J. Eich-
man, and A. Tarancon, and J.L. Dominguez-Garcia, and O. Gomis-Bellmunt, “Predictive
control for mode-switching of reversible solid oxide cells in microgrids based on hydrogen
and electricity markets”, International Journal of Hydrogen Energy, vol. 102, pp. 120-128,
2025.

Final version available at:
URL: https://www.sciencedirect.com/science/article/pii/S0360319924057161

DOL: 10.1016/j.ijhydene.2024.12.497

BibTex:

@Article{delPoz02024,
Title = {Predictive control for mode-switching of reversible solid oxide
cells in microgrids based on hydrogen and electricity markets},
Author = {Hector del Pozo Gonzalez, and Fernando D. Bianchi, and Marc Torrell,
and Lucile Bernadet, and Josh Eichman, and Albert Tarancén, and Jose Luis
Dominguez-Garcia, and Oriol Gomis-Bellmunt},

Journal = {International Journal of Hydrogen Energyl,
Year = {2025},

Number = {},

Pages = {120-128},

Volume = {102},

Doi = {10.1016/j.ijhydene.2024.12.497}


https://www.sciencedirect.com/science/article/pii/S0360319924057161
http://dx.doi.org/10.1016/j.ijhydene.2024.12.497

Predictive control for mode-switching of reversible solid oxide cells in
microgrids based on hydrogen and electricity markets

Hector del Pozo Gonzalez®*, Fernando D. Bianchi?¢, Marc Torrell?, Lucile Bernadet?,
Josh Eichman?, Albert Tarancén®¢, Jose LLuis Dominguez-Garcia® and Oriol Gomis-Bellmunt®¢

“Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 2°, 08930, Sant Adria de Besos, Barcelona, Spain
b Instituto Tecnolégico Buenos Aires (ITBA), Ciudad Auténoma de Buenos Aires, Argentina
¢Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Ciudad Autonoma de Buenos Aires, Argentina

dCentre d’Innovacio Tecnologica en Convertidors Estatics i Accionaments (CITCEA), Departament d’Enginyeria Electrica, Universitat Politecnica de
Catalunya (UPC), Barcelona, 08028, Spain

¢Institucio Catalana de Recerca i Estudis Avangats (ICREA), Passeig Lluis Companys 23, 08010, Barcelona, Spain

ARTICLE INFO ABSTRACT

The use of reversible solid oxide cells (rSOC) as bi-directional Power-to-Gas (P2G) and Gas-to-Power
(G2P) devices in microgrids with renewable energy sources has attracted considerable attention in the
last years. The present study analyzes the energy management of a rSOC connected in a microgrid,
considering hydrogen prices from the European HYDRIX market and electricity prices and demands
from the Spanish electrical grid. The energy management strategy, based on model predictive control,
determines the optimal path for transitions between SOE and SOFC according to the market. The
strategy relies on a model including experimental rSOC transition times, thermal effects, and safety
constraints to avoid undesired mode switching. The study was conducted in a scaled grid-connected
system including 10 kW solar and wind renewable generation and a rSOC of 4.2-6 kW (SOFC-SOE).
The aim is to assess the impact of different renewable energy sources on the performance of rSOC and
on the resulting economic balance. The results show that an energy management strategy considering
hydrogen markets can reach higher revenue, with increases of ~4.6% for solar and ~14.1% for wind,
compared to existing algorithms based solely on electricity prices.
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© Tolerance to impurities: They have the ability to tolerate
small amounts of impurities in the fuel, enhancing their
versatility.

1. Introduction

To harness the potential of reversible solid oxide cells
(rSOCs) in a green hydrogen-based economy, this technol-

ogy can store excess energy from renewable sources like
solar and wind power in the form of hydrogen. rSOCs have
a unique dual-mode operation, functioning both as solid
oxide fuel cells (SOFC) and solid oxide electrolyzers (SOE).
This versatility is achieved by altering the flow direction
and reversing the electrical polarity, allowing rSOCs to
switch between generating electrical energy and producing
hydrogen, depending on the system’s needs [1, 2]. For long-
term operation, rSOCs are an ideal technology for small and
large-scale applications that require high energy efficiency,
durability, and fuel flexibility. When compared to other hy-
drogen storage technologies like PEM or Alkaline, reversible
solid oxide cells offer several distinct advantages, including:

™ Energy efficiency: This is attributed to their higher oper-
ating temperatures and the direct conversion of chemical
energy into electricity.

™ Fuel flexibility: They can operate with a wide range of
fuels including hydrogen, natural gas, biogas, and liquid
fuels.
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& Thermal stability: Due to their higher operating tem-
peratures and absence of liquid water inside the stacks,
they exhibit greater thermal stability compared to other
technologies.

From an industrial prospective, the installation of large-
size rSOC systems have already started. On the one hand,
a rSOC-based energy storage system formed by 1,920 indi-
vidual cells have been implemented at Boeing Huntington
Beach connected to the Southern California Edison grid [3].
Other example is the Green industrial Hydrogen (GrInHy)
project [4], which included an rSOC with a nominal power
of ~ 150 kW in a steel processing plant, with the aim of
using the heat excess to reduce costs and increase the overall
efficiency, reaching a round-trip value close to 40% [5].

On the academic side, in recent years several works have
been published mainly focuses on stack characterization, dy-
namic behavior, material analysis, degradation efficiencies,
etc. However, the operation and control of rSOCs within
electric power systems have not widely studied. In different
studies with a similar scope, Sorrentino et al. [6, 7] studied
the application of rSOCs for supplying a residential complex
of 20 houses as load. The different proposed algorithms
sought to manage the demand of each of the apartments,
establishing the controller’s instructions depending on eco-
nomic and thermal aspects. Huang et al. [8] proposed a
model-driven optimal operation strategy for rSOC-based
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microgrids to minimize costs, considering electricity-heat-
hydrogen interactions, mode switching processes, and heat
recovery, for its potential application in Denmark’s energy
islands. Califano et al. [9, 10] proposed control strategies
aimed at mitigating the degradation of rSOC working in mi-
crogrids, focusing on limiting grid support to achieve more
cost-effective performance. Building on this, they devel-
oped a multilevel control framework for energy management
that optimizes both hydrogen and thermal energy storage,
effectively reducing system size and capital costs while
minimizing energy waste. Other studies have addressed tran-
sitions using simulators with different fidelity levels. For
example, Peksen [11] investigated the thermomechanical
impacts on rSOCs during the mode-switch, using FEM-
based techniques to assess dynamic and static loading effects
on materials, providing insights for optimizing rSOC design
and reliability.

Expanding the scope to other hydrogen-microgrids not
based on rSOC, several studies can be found focused on
the behavior of grid-connected hydrogen systems in micro-
grids, specially employing PEM technology. For instance,
the works by Valverde et al. [12, 13], which examines
hydrogen-based microgrids with distinct electrolyzer and
fuel cell units, often in conjunction with battery storage
systems. Also, Abdelghany et al. [14, 15] presented different
strategies for efficiently managing a hydrogen-energy stor-
age system in different microgrid configurations powered
by solar and wind energy. These studies primarily utilized
predictive algorithms to manage the microgrid, aiming to
optimize the performance of each system component. Their
approach could serve as an inspiration for exploring the
potential applications of rSOCs in similar contexts.

Regarding experimental results, several works have fo-
cused on characterizing the behavior of the stacks, [16],
materials and degradation [17, 18], pressure impacts [19]
and transition cycles [20]. This last point is important for
designing realistic control strategies, since in long-term op-
eration of grid-connected rSOC, the transition cycles are
of great importance. Among the studies that have explored
the experimental evaluation of transition cycles, Aicart et
al. [20] tested a rSOC system comprising a 1 kW SOE
and a 4 kW SOFC during transitions using methane and
hydrogen as fuels. Srikanth et al. [21] found that abrupt
mode switching between SOFC and SOEC is unviable due
to BoP component behavior. Peters et al. [22] showed that
rSOC mode transitions from fuel cell to electrolysis can
typically occur in under three minutes, though a 10-minute
wait is needed for stable steam generator operation. Finally,
del Pozo et al. [23] analyzed the different response times of
transitions and their impact on microgrid dynamics using a
reversible system with a rated 0.7 kW SOFC and 1 kW SOE.
The latter will be used for this study.

The key contributions of the article include the follow-

ing:
1. A novel predictive control strategy for grid-connected

rSOC systems that optimizes performance based on
variable hydrogen and electricity market prices.

2. Testing the algorithm in both short-term and long-
term scenarios within a 10 kW solar and wind-
dominated microgrid, demonstrating the benefits of
integrating hydrogen market considerations into op-
erational strategies.

The structure of this article is outlined as follows. In Sec-
tion 2, we delve into the fundamentals of rSOCs, providing
an overview of dynamic behavior modeling and presenting
a model-experimental comparison of a 0.7 — 1 kW (SOFC-
SOE) reversible solid oxide stack and the grid integration.
Moving on to Section 3, we detail the derivation of the
predictive controller and elucidate the constraints by the Eu-
ropean hydrogen and Spanish electricity markets. The results
obtained from applying the predictive controller to real solar
and wind energy data profiles are presented in Section 4.
Finally, Section 4.2 offers a comprehensive summary of the
findings and draws key conclusions from the study.

2. Reversible hydrogen storage with solid
oxide cells

2.1. Reversible solid oxide cell dynamics

When the rSOC system operates in fuel cell mode
(SOFC), fuel, such as hydrogen or methane, is supplied to
the anode, and air is supplied to the cathode. In the case
study using hydrogen fuel, hydrogen oxidizes at the anode,
releasing electrons to generate electricity according to the
reaction:

H, + 0>~ = H,0 + 2¢". (1)

The resulting oxygen ions migrate through the solid elec-
trolyte, while air flows to the cathode. At the cathode,
oxygen ions react with electrons and combine with the fuel,
producing water and heat through the reaction

%02 +2¢” — 0%, )

In electrolysis mode (SOE), when electricity is supplied to
the cells, hydrogen is generated at the anode through the
water reduction reaction

H,0 +2¢~ — H, + 0%, (3)

while oxygen is produced at the cathode by the oxidation of
water

0 — %02 + 2. @)

The operation of reversible oxide cells has been dynam-
ically characterized through experiments in our previous
works [24, 23]. Table 1 summarizes the most important
equations of this model. Briefly, equation (5) describes the
voltages of cells operating in SOFC and SOE modes. These
voltages are determined by the Nernst equation (6), ohmic
losses (8), activation losses (12), and concentration losses
(13). The Nernst potential is expressed in terms of the partial
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Table 1
Key equations of the lumped model for the 0.7-1 kW SOFC-
SOE system [24, 23]

™ Cells Voltage:

VSOFC = EN = Nonm — Mact — Meons (5)
VSOE = EN + Hohm + Nact + Neon
& Nernst Potential
1/2
RT pH';pOz
Ey=E,+ —-In 6
v=Fot g il =2 (6)
© Reversible Voltage
E, = 1.2708 + 0.00274 T 7)
® Ohmic Losses
Hohm = 1 ASRd (8)
© Specific Area Resistance
Le
ASR==S+R, (9)
Gel
© Electrolyte ionic conductivity
00, —E il
Gy = Te - exp (%) (10)
© ASR including degradation terms
ASR, = ASR(l + k1) (11)
® Activation losses:
RT ., .1 i RT ., .1 i
= h + h 12
Tact = 4 Fo" (21'0,“) G F" (2;‘0,6) (12)
o v ~ S
Anode Cathode
& Concentration losses:
n =R PP + BT o [ Lo (13)
o =28 "\ oty ) A M\ G
Anode Ca:l;de
& Thermal balance:
AQ = Qstack + QOL chn - Qenv (14)
AH
cell ( 2oF cel/)
with < erack n. (HLHV(ZF)_ - teIl)i (15)
Qm,,- = QrY - Q‘g
Qe;1u l()bSOU(T /ramb)

pressures of gases p,, and the reversible voltage E, unlike
the initial model, is a function of temperature 7 (7). The
ohmic losses depend on the current density 7 in A/cm?
and the Area Specific Resistance (ASR), which is influenced
by the contact resistance R, and the electrolyte thickness
L, (9). The electrolyte ionic conductivity o,; (10) is de-
termined by the activation energy of the electrolyte E,., .
To account for degradation effects, a linear relation based
on the cell degradation rate x is given in (11). Activation
losses (12) are related to the exchange current densities i, ,

Table 2
Table of allowable mode transition in the rSOC.

Next mode
ON OFF StB TCC SOE SOFC
o ON - X v/ X X X
8 OFF | x - v X X X
E s | v v - v v v
$ TCC X X 4 - v v
E SOE X X v v - X
Y SOFC| x  x / /X -
and i, for the anode and cathode, respectively, and are

expressed as functions of the temperature and the charge
transfer coefficients a, and @, at the anode and cathode,
respectively. Concentration losses (13) are described by the
partial pressures at the Triple-Phase Boundary (TPB) and
are modeled using Fick’s laws for gases at the anode and
cathode. The thermal balance equation (14) establishes AQ
as the difference between total and stack energies. The
symbol Q,,,., represents stack heat which is function of
the hydrogen lower heating value H 'V, 0,,,, denotes oven
heat losses, Qcon, ; corresponds to the j-th gas convection
losses, and Qenv represents environmental losses, which
are functions of the oven heat loss coefficient k,,,, and
the oven surface .S,,. Note that these equations model the
electrochemical and thermodynamic processes. A more in-
depth explanation and the equations governing the balance
of plant and low-level controls, which significantly impact
overall system dynamics, can be found in the previous works
[24, 23].

2.2. rSOC mode transitions

The transition among modes in a rSOC may affect the
efficiency, safety, and the cell lifespan. Sudden changes in
the power delivered and absorbed and also in the operating
modes must be avoided. The operating modes in a rSOC
and the possible transitions are represented in Figure 1.
The red area includes the possible modes in cold conditions
and the green area the modes in warm conditions. A rSOC
presents six modes: OFF, ON, Stand-by (StB), transition
cycle (TCC), SOE and SOFC. Note that in Figure 1, the
transition from ON—StB is represented by the heating-up
process whereas the transition from StB—OFF is repre-
sented by the cooling-down. The arrows in Figure | indicates
the sequences of possible mode transitions. These possible
transitions can be summarized in Table 2, where X denotes
a not allowable mode transition and v a allowable mode
change. The right plot in Figure 1 presents a comparison
between an experimental voltage response and the response
obtained with the model in the previous subsection, during
a SOFC to SOE transition with composition changes.
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Warm conditions

Normal transition to stand-by

Cold conditions
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Figure 1: Possible modes and transitions of a rSOC system. The blue area shows a comparison between the experimental response
and the model of a SOFC-SOE transition with change of composition of the studied rSOC system.

D%

B A 8 K

PPV PW Pload Pgrid Ik

Figure 2: Simplified diagram of the microgrid under consid-
eration with a grid-connected rSOC. Green areas represent
units delivering power, while red areas represent units absorbing
power.

Forescast
T que} u(k) rSOC
+h Predictive Microgrid
I—V Control
Hydrogen T x(k),'H(k)l
Dynamics

Figure 3: Schematic representation of the system under study
and the proposed control strategy.

3. Predictive control for rSOC
mode-switching

The main objective of the predictive control strategy is
to produce set-points for the rSOC and the grid converter
based on the consumption and renewable power generation
forecasts, ensuring the local hydrogen tank levels associated
with the rSOC system are maintained almost constant. When
the rSOC operates in SOE mode, the capacity of hydrogen
in the tank increases, whereas when it works in SOFC mode,
the capacity decreases as hydrogen is absorbed from the
tank. In this study, we assume a continuous water supply for
electrolysis mode, hence the water tank dynamics will not be
considered. In case hydrogen is also sold to the supply chain,
the control strategy can also optimize the total profit by
supplying the gas to the tank or to the gas network according
to the hydrogen prices.

Figure 2 depicts a simplified diagram of the microgrid
under consideration with a grid-connected rSOC, and Fig-
ure 3 presents a scheme of the proposed predictive control
strategy. The control algorithm receives the forecasts of
the wind and solar power generations, the current power
consume and the rSOC states, and produces commands for
the rSOC and the converter connecting the microgrid with
the rest of the grid. At each time step k, the predictive control

algorithm solves the following optimization problem:

4

minimize " A;J;(x(k|N), u(k| N), d(k| N))
w( = (16)

subject to

K (x(k| N, u(k| N, dkIN)Y), j=1,....7,

where 4; are weights and N is the prediction horizon. The
notation x(k + i|k) denotes the prediction of the variable
x at time k and i samples into the future, and x(k|N) =
[x(klk)x(k + 1|k) ... x(k + N — 1]k)]. The model states
are gathered in the vector x, the control input in u and the
rest of inputs in d according to:

X(k) = | Hiani(K)  Poen(k)  Progg(k)  5(k)
0s0E(k)  bs0rc(k)  bon(k)  Sopp(K)
Srcck) T Vo) |7,

u(k) = [Pyig®)  Posoc®) Hy®)  wisoc®)]”

d(k) = [Copk)  Crpp®)] .

Every elements of the previous vectors, the terms J; in the
objective function and the constraints K; will be discussed
in detail in the next subsections.

3.1. Objective function definition

The objective function in the optimization (16) consists
of four terms selected to achieve a trade-off among the
power contributions of the grid and the renewable sources
considering the energy cost, and a safe operation of the rSOC
by limiting the number of transition cycles. Each term is
defined as follows:

1. The first term penalizes the power contribution from
the grid P,,;4, since the use of renewable power or
energy stored in hydrogen for compensating the con-
sume Py, should be prioritized. However, in moments
of low renewable power production or low amount of
stored hydrogen, the contribution of the network power
is necessary to ensure the power balance and the proper
microgrid operation. This objective is expressed as

N-1

T10) =Y, |Crpe k) Peiak + 1) (17)

i=0
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with éREE the forecasting of the energy cost in €/kWh.
These prices penalize the amount of energy purchased
or sold in order to maximize total economic profit. The
power exchanged with the grid P,,,, is positive when the
electricity is purchased and negative when it is sold.

. The second term corresponds to the power balance of the
system and to power tracking, since it is desired that the
power demanded by the load is always satisfied by the

generation P,,,, through the tracking error minimization
driven by
N-1 )
DKy =Y (Pagk +1) = Pk +D)7. (18)

i=0

. The third term is associated with the optimization of
the transition cycles of the rSOC. These cycles have a
significant impact on the system degradation due to the
operation at high temperature. Sudden mode changes
should be avoided since the thermodynamic effects in-
side the cell contributes to the degradation of the rSOC.
In addition, optimal operation is desired in both of the
operating modes, SOE and SOFC. Therefore, it is nec-
essary to ensure a sufficient dwell time at each mode for
the stabilization of internal phenomena without affecting
degradation. These objectives are considered in (16) with
the term J; penalizing the changes between SOE and
SOFC modes, and the constraint £ to avoid undesired
warming-up and cooling-down processes when the stack
has reached the warm operation. This is expressed in
mathematical terms as:

Js(k) = Z sor ( PSOE(k+i)5SOE(k+i)_ZzoE)z

. . % 2
+ WSOFC (Psorc(k + Désorc(k + 1) = Z§orc)

warming _on cooling _off
+Bsoc  Oisock + D+ Bgoc Osoctk +1)
(19)

P P warming coolmg .
where Wqp, Woopes Bsoc — and Bgo are yvelght—
ing factors. The power absorbed in SOE mode is Pyop
and the power produced in SOFC mode is Pyggc, with
Fisoc = Psorcdsorc + Psordsor- The variables 5orc
and 64 takes values 1, if the rSOC works in SOFC or
SOE mode, respectively, and O otherwise. The constants

and z} represent the desired power set points

*
ZS0E SOFC

for each mode when activated. The variables ¢° soc and

rSOC are given by the constraint:

Ky ¢ 0%kt +0%50(k+D)+055 (k+i) < 1 (20)
which are related with the possible states shown in the
cold area (left red side) of Figure 1, respectively, being
o states of the rSOC at time k to compute the start-
warming-up and shut-cooling-down decisions.

. The last term .J, in the objective function takes into ac-
count the participation of the microgrid in the hydrogen

where in all expressions £ = k, ...

markets. The aim here is to maximize the profit from sell-
ing hydrogen. This last term consists of two parts. The
first one accounts for the revenue generated by hydrogen
sales, and the second one penalizes the deviations from
the desired hydrogen tank level. The latter prevents the
algorithm from continuously prioritizing the hydrogen
sale, which could lead to an excessive deviation of the
tank level from the desired value. Mathematically, the
objective is expressed as

N-1

TJuk) = —

7, CT (k + iyigop(k + i)’ + @1
i=1
N-1

(Lyolk + 1) — £3,0c+ D),
i=1

where 7, is the sampling time, CZZH is the hydrogen sale
price forecasted from the HYDRIX market, which ac-
count for overall hydrogen process-related expenses such
as distribution. The symbol rigqg is the mass flow rate
of hydrogen that dependents on the power in SOE mode;
and L4, and £}, denote the measured and desired levels
of the hydrogen tank, respectively. Note that the term
associated to the hydrogen sale is negative because the
optimization problem (16) is stated as a minimization. To
consider cases in which the system does not participate
in the hydrogen market, the price é::u is set to zero.

3.2. Constraints definition

The rest of constraints £; in (16) are stated as follows,
,k+ N —1:

1. First, the rSOC dynamics is governed by

Hyani (€ + 1) =H, 4 () = 7 (8507 (€ Vitsorc —
Ky 8s0rMsor) (1 — 8,4(£))
Hgg(f) =T gg5$OE(f)mSOE(f)
(22)

where H,,,,, is the amount hydrogen stored in the tank
in kilograms for a proper operation of the rSOC, H,,
the amount sold to the gas grid, riggpc and rigog, the
mass flows in SOFC and SOE modes, respectively. The
variable 6,, takes value 1 in case hydrogen is sold and
0 otherwise. In addition, the hydrogen amounts should
satisfy

K Hige < Myani(&) < i (23)
Kyt HIY < Hy () < HI. (24)

. Next, in pursuit of producing and utilizing green hydro-

gen from renewable sources instead of relying on energy
from the grid, we impose a limitation on the power
demanded to the grid (energy purchased) and the power
injected (energy sold) should satisfy:

Ks : =06 P!, < Pyiy(£) < PR, 25)
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where Pg”en is the total rated renewable power (photo-
voltaic or wind) and Pg“r’%" the upper limit of the power
converter connecting the microgrid to the grid. Notice
that P4 is negative when power is sent to the grid and
positive otherwise. The limitations of the power con-
verter also affect the maximum amount of hydrogen that
can be injected into the supply chain, as the maximum

hydrogen generation, H,,, is limited by

K : Hyy(#) < <Pgen +P;;;X) nsop(©).  (26)

where nggp is the efficiency in SOE mode.

3. Changes of operating modes must be limited and the
control algorithm must consider the transition constraints
discussed in Section 2.2. To include these constraints in
the optimization problem (16), let us define the variables:

5,(£) € {0,1)

where j € {ON, OFF, StB, TCC, SOE, SOFC}, the six
modes described in Section 2.2. These variables take
value 1 if the rSOC works in the j mode and O otherwise.

We split the mode constraints into cold and warm con-
ditions (red and green areas in Figure 1, respectively).
Thus, the constraint on the possible operating modes in
cold conditions can be stated as

Son(©) + 6s(£ + 1) < 1,
Ky 1 60 + 65 (£ + 1) < 1, 27)
50N(lxﬂ) + 5OFF(f) + 5SlB(f) = 1,

On the other hand, the transitions constraint in warm
conditions can be stated as

Ky

(28)
0s0E(?) + 650rc(©).

This ensures that only one operating mode is active at any
instant £, and the reactor is kept in warm conditions. To
avoid infeasible transitions, as depicted by the red crosses
in Table 2, we define the constraints:

5SOE(f) + 5SOFC(”p +1)<1,
o )+ 6 £+1)<L1,

K : sorc(?) + sog( ) (29)
0s0E(€) + 61cc(@ +1) < 1,

0sopc(@) + 0pcc( +1) < 1,

In order to ensure that the operation in TCC mode is
followed by the operation in SOE or SOFC mode, we
define the constraints:

) { o1cc(€) — 6g0p(€ +1) <0,
10 -

(30)
otcc(?) — 6sopc(@ +1) L0,

To limit the number of transitions between SOE and
SOFC modes, let us define the difference matrix operator

of dimension (N — 1) X N:

1 -1 O 0
R O &
0 0 1 -1

Then, the limit in the number of mode transitions can be
imposed as:

8sop(k|N)YDT D6 (k| N)T < a,

1 - (32)
{ 8sorc(k|N)DT D8gopc(kIN)T < a,

where « is a positive scalar. This constraint limits the
maximum allowable number of transitions under warm
conditions as denoted in Table 2. These transition con-
straints are similarly defined in other works related to
rSOC mode-switching where only warm operation is
considered, see e.g. [8, 25].

4. All time, the generated power must be sufficient to meet
the losses and load requirements to ensure the power
balance, therefore:

0 =Py, (£) + Pyiia(€) + Psopc(£)6s0rc(?)
= Psop(£)é50E(6) — Pigad(€)
—Psp(£)d5(0) — Prcc(£)ércc (),

.

~
passive stack losses during Pgoc =0

(33)

where Prcc and Py are the passive power losses during
each mode from the balance of plant elements.

The remaining constraints aim to ensure safe operation and
minimize degradation of the rSOC.

5. Increments in the stack temperature must not exceed
30°C during a time step 7, since sudden temperature
changes may cause critical problems such as cell rupture
or a hydrogen leak. In these cases, power system oper-
ations must cease, stopping current injection or power
extraction, and revert to open-circuit voltage (OCV) to
ensure safety. This constraint is imposed as

Kz :T@)-TE-1)<30°C, 34)
where T is the stack temperature.

6. In order to minimize losses due to stack degradation,
the voltage must be kept between 0.6 V,,;; (SOFC) and
1.4V,,; (SOE), that is,

K14 . 06 I/cell S I/(Zell(k + l) S 1'41/66”’ (35)

where V,,;; is the volt per cell.
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3.3. Forecasting of hydrogen and electricity prices
and power balance

Most of the existing microgrid studies assume that the
stored hydrogen is contained entirely in a single tank. Con-
sequently, the limits of hydrogen generation and storage
are determined by the tank capacity. This usually requires
adding a battery system to ensure the power balance when
the tank is full or empty. Here, we take a different approach
by considering the participation of the rSOC microgrid in
the hydrogen and electricity markets. That is, the hydrogen
production can be stored or sold according to the hydrogen
and electricity prices. For this purpose, a forecaster is needed
to properly estimate the hydrogen and electricity prices in the
prediction horizon. We employ the Holt-Winters’ method,
which offers a versatile framework for predicting time se-
ries data with trends and seasonal patterns. This method is
capable of effectively capturing periodic fluctuations and
is commonly utilized for short-term forecasts in sales or
demand time series data [26]. Here, the forecaster is used
to estimate the matrix d(k|N) including the hydrogen and
electricity prices, Cy, and Cgpf, respectively. The method
uses the following expressions to estimate the MPC inputs
ateachinstantZ =k, ..., k+ N — 1:

YO) =a (29¢) = s —m)) + (36)
+1-a) (Y9 -D+b90C-1),
b =p (y0(&) =y (£ - 1) (37)
+ (1= pp@£ - 1),
s =y (290) - y9©)) (38)
+ (1= )s P —m),
29D+ h) =y P&+ h- b)) (39)

+ 59D =m+h),

where Z denotes the smoothed value, b the trend component,
s the seasonal component, and y the measured value. The
symbols a, f, and y correspond to the smoothing param-
eters. The variable m represents the number of periods in
a seasonal cycle, while 4 is the seasonal component index
used for adjusting the seasonal effect in the forecast. The
superscripts (q), with ¢ = 1,2, correspond to the profiles
Cj, and Crgg, respectively. That is,

2(1)(k|i)] [c (ki ]
d k l = ~ . = A h2 . .
ki [2(2)(1"’) Creg(k|i)
An example of the forecaster’s performance for the Eu-
ropean Energy Exchange (EEX) HYDRIX hydrogen market

[27] is shown in Figure 4, where the real values depicted in
blue and the predicted values in orange.

4. Results

To conduct case studies close to real scenarios, we
analyze the control performance using renewable generation
data from solar and wind energies in separate microgrids.
The profiles are sourced from two distinct weather stations

260

250

240

230

220

Value (€/MWh)

210

200 s —©— Hydrix Market
—#— Week-ahead Forecast

01-Jan 01-Apr 01-Jul 01-Oct 31-Dec

Figure 4: Evolution of annual market price of hydrogen based
on HYDRIX [27] in €/MWh. The blue line corresponds the
real prices, whereas the orange line to the values predicted by
the forecaster. The shaded blue region indicates the confidence
intervals.

Table 3

Main parameters of the studied microgrid.
Microgrid parameter Symbol Value Units
Nominal Power Generation P, 10 kW
SOFC Power Py 6x0.7 kw
SOE Power Py 6x1 kw
Peak Load M, 35 kw
H, Tank Capacity Hpex 6.5 kg
H, Desired Level 5 85% -
Prediction Horizon H, 10 -
rSOC Stack Parameter
Cells Area A, 63 cm?
Stack Mass M, 5.5 kg
Number of Cells n, 30 -
Oven Power P, 2.75 kw
Electrolyte Thickness (8YSZ) L, 10 pm
Contact Resistance R, 0.3 Q
Degradation Rate K 1.2 mQem?/kh

in Catalonia, Spain. The wind series were interpolated the
from a location near Serra de Montsant, with approximate
coordinates of (41°15°05"N, 0°45°56"E), using a Intertek
10 kW small wind turbine sourced from the OpenFAST
repository [28]. The solar power generation profiles were
obtained from irradiation data from a location near Mataro,
with approximate coordinates of (40°46°43"N, 0°30°14"E).

The objective of these scenarios is to show the robustness
and adaptability of the proposed control algorithm under
different renewable generation profiles.To ease the compar-
isons, the next figures present the same variables for all
the scenarios: the renewable generation, the involved system
powers and the dynamics of the generated or absorbed
hydrogen. In these figures, it is interesting to observe which
renewable energy source requires more power from the grid.
This will allow us to determine the overall benefits over time
provided by the optimal control of the rSOC depending on
the type of power source: wind or solar. The simulations
were performed in MATLAB/Simulink, and the controller
was implemented using YALMIP [29] and GUROBI [30].
The parameters corresponding to the dynamics of the micro-
grid, and the control settings are listed in Table 3. A complete
set of parameters related to the reversible solid oxide stack
model, along with the corresponding equations and their
links, can be found in [24, 23].

H del Pozo Gonzalez et al.: Preprint submitted to Elsevier

Page 7 of 11



Predictive control for mode-switching of reversible solid oxide cells

P load P gen
: .

~ /\H_/\[\M [\\ ~
1 I N A | P W \ I

3 Psorc T Psor
- -

u

Power (kW)

o

< [ ] 1’ " T 1~ T |
Z °mm 8] I
-4 B B t t t t t

— Py — Paan

_1F T T T T — T T T T

z

&4

5—)0.5 A

H

o

H, k]

. f . . . . . . .
0 10 20 30 40 50 60 70 80 90
Time [h]

Figure 5: Example demonstrating adherence to transition times
between Solid Oxide Electrolyzer (SOE) and Solid Oxide
Fuel Cell (SOFC) modes. The simulation is conducted using
constant load and low irradiance solar profiles over selected
February days, considering only electricity prices.

4.1. Event analysis in wind- and solar-dominated
microgrids

To validate the controller’s functionality and ensure
compliance with transition constraints, some events are
aimed to be analyzed with both solar and wind profiles.

The first case study was conducted under constant load
and low irradiation days in February in order to assess these
aspects on the transition cycles. The upper plot in Figure 5
displays the generation profile with green, the power de-
mand with blue line, and the difference with gray areas. It
can be seen that, during periods without solar generation,
the fuel cell maintains a constant power contribution. This
leads to downward ramps in the tank dynamics, as can be
observed in bottom plot, indicating hydrogen consumption
for electricity generation. The energy purchased (blue line)
and the energy sold (red line) are shown in the second plot
from the bottom. The peak energy purchases from the grid
coincide with transition periods in order to cover the power
demand. On the other hand, the peaks in P,,;; correspond to
the grid contributions to cover the electrolyzer’s inability for
responding to generation peaks. An analysis of transitions
shows that the transition times between modes are met. A
detailed examination of rSOC voltage dynamics around the
70-hour mark illustrates correct behavior during direct mode
transitions, minimizing standby mode operation. This case
study demonstrates a notable increase in energy sold to the
grid and greater participation in hydrogen markets. However,
fuel cell operation cycles remain prominent due to solar
energy’s daytime contribution.

Figure 6 presents the results corresponding to a scenario
where the renewable power comes from a wind turbine, and
the profit is optimized considering only the electricity prices.
During the initial hours, with low electricity prices, the SOE

mode is activated to fill the hydrogen tank, as its levels
are not yet full. As electricity prices rise, the SOFC mode
becomes more prominent, as depicted in the third plot from
the bottom. Consequently, the amount of energy sold, shown
in the second plot from the bottom, increases. This sold
energy comprises both the excess renewable power and the
electricity generated in SOFC mode. This shift significantly
impacts the tank dynamics, as seen in the bottom plot, where
hydrogen levels decrease during periods of energy sales to
the grid.

In Figure 7, it can be observed the results for a scenario
similar to the previous one, but now considering the elec-
tricity and the hydrogen markets in the profit optimization.
The top plot shows a marked increase in the trend of the
hydrogen market price (blue line) at the instant ¢;, while
electricity prices (red line) remain with a lower revenue.
Given the high wind generation levels, which can supply
the load, the electrolysis mode is predominant. When the
forecast detects a potential increase in hydrogen prices, the
system activates the sale to the grid in SOEC mode. From
that moment, the hydrogen tank level is maintained at the
level reached up to ¢; (highlighted in blue in the bottom plot),
while the sale to the grid (highlighted in red) begins with a
significant contribution in electrolysis mode. It is interesting
to note, in the third plot from the bottom, that around hours
100 to 120, the electrolysis mode reaches a minimum safety
voltage, as the cell voltage has dropped below the minimum
allowable level, causing the SOE mode to disconnect, and
the energy is instead diverted to the grid.

Comparing Figures 5 and 6, it is possible to observe
that the rSOCs operation varies significantly depending on
whether they are powered by solar or wind energy. Solar
energy cycles show extended periods of SOFC operation,
whereas wind energy cycles emphasize the electrolysis mode
of operation. Although solar energy enables participation in
hydrogen markets, its energy contribution only during day-
light hours results in lower market participation compared to
wind energy.

4.2. Monthly revenue analysis in wind- and
solar-dominated microgrids

Given the substantial volume of data generated from
a monthly analysis with the considered sampling intervals
ranging between 10 and 15 minutes, the second part of the
results analysis is conducted using statistical tools. Specif-
ically, the months of May for solar energy and October for
wind energy have been selected to facilitate a comparative
analysis of the rSOC operation modes corresponding to each
type of generation. This allows us to make an assessment of
the potential revenue increase associated with each market
participation.

The analysis is presented in Figures 8 and 9 for wind and
solar energy, respectively. Both figures are divided into three
parts: a), b), and c). Subfigures a) shows the percentage of
time corresponding to each operation mode of the rSOC, and
subfigures b) to the duration of the periods of time in which
energy is purchased and sold. It is noted that the rSOC states
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days considering only the electricity market prices, highlighting
a bit higher participation of the SOFC mode (34.49%), and the
SOE mode (26.35%).
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Figure 7: An analysis of the system's operation during windy
days considering an electricity and hydrogen market price,
highlighting a higher participation of the SOE mode (79.2%),
compared to the SOFC mode (9.4%). The signal ¢, indicates
an increased revenue trend shift in the hydrogen markets

must sum to 100% of the operation time, as the system is
considered to be in the warm zone during operation. For sim-
plicity, non-power-contributing states STB and TCC have
been combined into one. Finally, regarding the operating
modes in a) and b), as well as the amount of power sold to the
grid or used for hydrogen production at each corresponding
price, an economic comparison of each mode is presented in
section c) in the form of a pie chart, where the percentages
are shown relative to the total.

It is noteworthy that in the case of wind energy, Figure 8,
participation in the hydrogen market leads to a significant

increase in the operating time of the SOE mode. This is
because the revenue from selling hydrogen is higher than
that from selling electricity. Consequently, the power sold
to the grid decreases considerably as the surplus energy
is allocated to hydrogen production. Specifically, selling
hydrogen in electrolysis mode results in a 14.31% increase
in revenue compared to selling electricity. This shift towards
electrolysis also leads to a reduction in the fuel cell mode
operation.

In the case of solar energy, Figure 9, the differences are
less pronounced. This is mainly due to the diurnal pattern
of solar generation and the absence of generation at night,
which necessitates more frequent use of the fuel cell mode
compared to wind energy in both scenarios. While there
is an increase in the SOE mode when hydrogen prices are
considered, it is only slightly offset by a decrease in the
power sold to the grid and does not result in the complete
absence of the SOFC mode. Although the overall differences
in the solar energy scenario are not very significant, the
higher hydrogen market prices still yield a 4.67% increase
in final profit compared to considering only the electricity
markets. This fact highlights the economic advantage of inte-
grating hydrogen production into renewable energy systems,
especially in markets with higher hydrogen prices.

Conclusions

This article has introduced a tertiary predictive control
strategy designed for the operation of reversible oxide cells
in solar and wind-dominated microgrids based on hydro-
gen and electricity markets. The model predictive control
strategy works with a forecaster and relies on a model
validated with experimental data, to determine the most
efficient switching between fuel cell and electrolyzer modes.
The findings of the analysis are as follows:

@ Solar energy exhibits more predictable mode-switching
events and shorter response times of the reversible solid
oxide cells compared to wind energy, based on analyzed
profiles.

@ In scenarios solely focused on electricity markets, situa-
tions dominated by SOFC mode operation arise. Notably,
hydrogen production may rely on grid energy during
specific operational periods, such as nighttime with solar
energy. Numerically, employing generation data from
Spain, the algorithm achieves a ~59% utilization in
SOFC mode and ~23% in SOE mode for solar-based
microgrids, with =#18% of the time allocated to transi-
tions or standby operation. In wind-powered systems,
the distribution is slightly different, with ~51% in SOFC
mode, ~37% in SOE mode, and ~12% dedicated to
transitions or standby.

& The consideration of both hydrogen and electricity mar-
kets alters system operation, favoring the SOE mode over
the SOFC mode due to limitations on grid hydrogen
absorption. Wind energy demonstrates more significant
contributions to hydrogen supply chains compared to
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from wind energy. The first three bars indicate the percentage of operation time for the three rSOC states, whereas the last two
bars indicate the percentage of time in which the energy is bought and sold to the grid. Subfigure a) corresponds to a scenario
without participation in hydrogen markets, b) to a scenario with participation in hydrogen markets, and c) revenue comparison
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Figure 9: Analysis of the percentage of operation time during a month (May) considering the renewable power comes only from
solar energy. The first three bars indicate the percentage of operation time for the three rSOC states, whereas the last two bars
indicate the percentage of time in which the energy is bought and sold to the grid. Subfigure a) corresponds to a scenario without
participation in hydrogen markets, b) to a scenario with participation in hydrogen markets, and c) revenue comparison

solar energy, attributed to pricing predictability and op-
erational strategies.

The performance of the rSOC in electricity or hydrogen
markets is viable, depending on the generation capacity
factor. In scenarios with a local tank and electricity
market orientation, installations dominated by solar or
wind energy achieve optimal results. However, when
participating in both hydrogen and electricity markets,
considering the SOE operating mode based on genera-
tion dynamics and market prices proves most beneficial,
especially if gas absorption from the pipelines is not
assumed. Future research should explore the integra-
tion of these systems into gas markets (e.g. methane
with some part of hydrogen) to further enhance their
operational modes. Despite variations in electricity and
hydrogen market prices, it is notorious that the variability
of renewable energy sources (mainly wind) results in an
increased revenue for the reversible oxide cell.
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