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Amethod for reducing implementation complexity in linear

parameter-varying controllers ⋆

Fernando D. Bianchi a, Ricardo S. Sánchez-Peña a

aInstituto Tecnológico Buenos Aires (ITBA) and Consejo Nacional de Investigaciones Cientí�cas y Técnicas (CONICET),
Ciudad Autónoma de Buenos Aires, Argentina

Abstract

Gain-scheduling is a popular control technique to deal with nonlinear and time varying systems. The linear parameter-varying
(LPV) system approach o�ers systematic tools to design gain-scheduled controllers. However, the implementation of these
controllers might demand complex mathematical operations to be performed in real-time. This limits the hardware and
the applications in which LPV controllers can be used. In this article, we analyze these limitations and propose a design
methodology to reduce the implementation complexity of gain-scheduled LPV controllers. The methodology is illustrated with
a nonlinear bicycle model used in electric vehicle control.

Key words: Linear parameter varying (LPV) systems, gain scheduling, implementation complexity.

1 Introduction

Linear parameter-varying (LPV) systems have become
a popular framework for modelling nonlinear and time-
varying systems. In this framework, the system dynam-
ics is described as a linear model depending on a set
of time-varying parameters. The popularity can be ex-
plained by the extension of well-known linear optimal
tools to systematically design gain-scheduled controllers
(Becker & Packard, 1994; Apkarian, Gahinet & Becker,
1995). Throughout the years, several improvements have
been proposed, mainly focused on enhancing perfor-
mance and considering more general LPV models (Wu,
Yang, Packard & Becker, 1996; Apkarian & Adams,
1998; Scherer, 2001; Mohammadpour & Scherer, 2012).
Unfortunately, these improvements also lead to more
complex controller implementations.

In general, implementation complexity of LPV con-
trollers is given by the particular synthesis procedure,
the LPV plant and the control speci�cations. In the im-
plementation of LPV controllers, a set of scheduling pa-
rameters must be measured in real-time and used to up-
date the controller coe�cients. Once these coe�cients
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are updated, the output is obtained similarly to any lin-
ear time-invariant (LTI) controller. As in LTI controllers,
the order increases the implementation complexity due
to the number of variables and mathematical operations
needed to compute the control action. Using systematic
design tools, the controller order can be large and is
given mainly by the plant order and the speci�cations.
To solve this issue, several model order reduction tech-
niques have been extended to LPV models (Wood, God-
dard & Glover, 1996; Beck, 2006).

Another source of implementation complexity is the up-
date of the controller coe�cients. The complexity of
these computations depends on the controller design
procedure and the particular parameter dependence of
the plant. For instance, synthesis procedures based on
parameter dependent Lyapunov functions have been
proposed to improve closed-loop performance (Apkar-
ian & Adams, 1998; Wu et al., 1996). However, the re-
sulting controllers require online matrix operations that
could be highly demanding for low computation-power
systems.

Two approaches can be identi�ed to simplify the update
of the controller coe�cients. As the mathematical ex-
pression of the controller coe�cients is in general inher-
ited from the plant, one approach consists in simplify-
ing the plant before designing the controller. In this line,
Kwiatkowski &Werner (2008); Ho�mann, Hashemi, Ab-
bas & Werner (2014) propose the use of principal com-
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ponent analysis (PCA) to reduce the parameter space in
a�ne and linear fractional LPV plants. This approach is
not always the best strategy with regard to closed-loop
performance. Sometimes, controllers with a parameter
dependence much simpler than the plant or even an LTI
control can achieve satisfactory performance (Sánchez
Peña & Bianchi, 2012). In these cases, it might be more
suitable the second approach in which the controller is
directly designed with a given parameter dependence.
In this line, de Hillerin, Scorletti & Fromion (2011) pose
the search of the best parameter dependence as a struc-
ture simpli�cation of a linear fractional representation.
Other two works with this approach are (Petersson &
Lofberg, 2014; Gahinet & Apkarian, 2013) in which a
controller with a pre-established structure is designed
from a set of linear approximations of the plant using
nonlinear optimization.

In this article, we propose an implementation-oriented
design based on the classical synthesis procedure intro-
duced in (Apkarian & Adams, 1998). The aim is to �nd
a controller parameter dependence that reaches a com-
promise between performance and implementation com-
plexity. Imposing a parameter dependence reduces the
set of stabilizing controllers and might a�ect the closed-
loop performance. Therefore, the proposed methodol-
ogy not only provides design tools to ease the controller
implementation but also guidelines to estimate the sim-
pli�cation e�ects on the closed-loop performance. Un-
like available controller simpli�cations, the proposed ap-
proach can be applied to rather general LPV plants with-
out model approximations.

This article is organized as follows. Next section provides
some necessary background on LPV control, Section 3
presents the main contribution, and Section 4 illustrates
it with an example. Finally, some concluding remarks
are drawn in Section 5.

Notation: The following notation will be used

[
Q+ P + PT RT

R S

]
=

[
Q+ P + (⋆) ⋆

R S

]
.

For a symmetric matrix Q ∈ Rn×n, λi(Q) stands for the
i-th eigenvalue of Q, ordered as

¯
λ = λ1 ≤ · · · ≤ λn = λ̄.

For a matrix Q ∈ Rn×m, σi(Q) denotes the i-th singular
value of Q and σ1(Q) = σ̄(Q) the maximum. For a real
symmetric matrixQ,Q > 0 andQ ≥ 0 stand for positive
de�nite and positive semi-de�nite, respectively, andQ <
0 and Q ≤ 0 for negative de�nite and negative semi-
de�nite, respectively. The identity matrix of dimension
n× n is denoted as In.

2 Background: LPV control design

Consider the following LPV system

G(ρ)





ẋ = A(ρ)x+B1(ρ)w +B2u,

z = C1(ρ)x+D11(ρ)w +D12u,

y = C2x+D12w,

(1)

where x ∈ Rns is the state vector, w ∈ Rnw is a distur-
bance, u ∈ Rnu is the control input, z ∈ Rnz is an out-
put related to performance speci�cations, and y ∈ Rny

is the measured output. The time-varying parameter ρ
is assumed taking values in a compact set P ⊂ Rnp and
its derivative ρ̇ in Pd ⊂ Rnp . It is common to take these
sets as hypercubes corresponding to the variation ranges
of ρ and ρ̇.

The parameter dependent matrices in (1) are

[
A(ρ) B1(ρ)

C1(ρ) D11(ρ)

]
=

[
A0 B1,0

C1,0 D11,0

]

+

nf∑

i=1

fi(ρ)

[
Ai B1,i

C1,i D11,i

]
, (2)

where the parameter functions fi : Rnp → Rnf are
known and bounded for all ρ ∈ P. Notice that a large
number of nonlinear and time-varying systems can be
described by the LPV representation (1)-(2), see e.g.
(Belikov, Kotta & Tõnso, 2014; Tóth, 2010).

The synthesis problem consists in �nding an LPV con-
troller

K(ρ)

{
ẋc = Ac(ρ)xc +Bc(ρ)y,

u = Cc(ρ)xc +Dc(ρ)y,
(3)

that ensures closed-loop quadratic stability and

∥z∥2 ≤ γ∥w∥2, ∀ ρ ∈ P, and ρ̇ ∈ Pd. (4)

Using the linearizing change of variables introduced in
(Scherer, Gahinet & Chilali, 1997), this design problem
can be cast as solving a convex optimization problem
that minimizes γ subject to the following linear matrix
inequalities (LMIs)

Π(X(ρ),Y(ρ), Â(ρ), B̂(ρ), Ĉ(ρ), D̂(ρ), γ) < 0, (5)
[
X(ρ) Ins

Ins Y(ρ)

]
> 0, (6)

where Π(·) is given in (7), and the matrix functions

X(ρ) = X(ρ)T , Y(ρ) = Y(ρ)T , Â(ρ), B̂(ρ), Ĉ(ρ), D̂(ρ)
and the scalar γ > 0 are decision variables to be found
(Apkarian & Adams, 1998).
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Π(X(ρ),Y(ρ), Â(ρ), B̂(ρ), Ĉ(ρ), D̂(ρ), γ) =


−Ẏ(ρ, ρ̇) +A(ρ)Y(ρ) +B2Ĉ(ρ) + (⋆) ⋆ ⋆ ⋆

Â(ρ) + (A(ρ) +B2D̂(ρ)C2)
T Ẋ(ρ, ρ̇) +X(ρ)A(ρ) + B̂(ρ)C2 + (⋆) ⋆ ⋆

(B1(ρ) +B2D̂(ρ)D21)
T (X(ρ)B1(ρ) + B̂(ρ)D21)

T −γInw ⋆

C1(ρ)Y(ρ) +D12Ĉ(ρ) C1(ρ) +D12D̂(ρ)C2 D11(ρ) +D12D̂(ρ)D21 −γInz




(7)

In order to reduce the optimization problem to a �nite-
dimensional one, the auxiliary functions are taken as

[
Â(ρ) B̂(ρ)

Ĉ(ρ) D̂(ρ)

]
=

[
Â0 B̂0

Ĉ0 D̂0

]
+

ng∑

i=1

gi(ρ)

[
Âi B̂i

Ĉi D̂i

]
, (8)

and the Lyapunov matrix functions as

X(ρ) = X0 +

nh∑

i=1

hi(ρ)Xi, Y(ρ) = Y0 +

nl∑

i=1

ℓi(ρ)Yi,

where gi : Rnp → Rng , hi : Rnp → Rnh , and ℓi :
Rnp → Rnl are basis functions (Apkarian & Adams,
1998). There is no rule to select the basis functions, but
it is common to copy the functions fi(·). Nevertheless,
notice that the choice of these functions might a�ect the
closed-loop performance as this limits the set in which
the Lyapunov functions and the controller matrices are
sought.

The optimization problem still consists of an in�nite
number of LMIs unless fi(ρ) = gi(ρ) = hi(ρ) = ℓi(ρ) =
ρi for all i = 1, . . . , np (a�ne case). In this case, it is
su�cient to check the LMIs (5) and (6) at the vertices
of P and Pd (Apkarian et al., 1995). A common practice
for the rest of cases consists in selecting a grid of points
in the parameter set P, solving the optimization prob-
lem with the LMIs evaluated at these points and then
checking if X(ρ) and Y(ρ) and the auxiliary variables
(8) satisfy the LMIs (5) and (6) evaluated in a denser
grid (Apkarian & Adams, 1998; Wu et al., 1996).

Once the optimization problem is solved, the controller
matrices are computed from

Ac(ρ) = N−1(ρ)(Â(ρ)−X(ρ)(A(ρ)−B2D̂(ρ)C2)Y(ρ)

− B̂(ρ)C2Y(ρ)−X(ρ)B2Ĉ(ρ))M−T (ρ), (9)

Bc(ρ) = N−1(ρ)(B̂(ρ)−X(ρ)B2D̂(ρ)), (10)

Cc(ρ) = (Ĉ(ρ)− D̂(ρ)C2Y(ρ))M−T (ρ), (11)

Dc(ρ) = D̂(ρ), (12)

where M(ρ) and N(ρ) are selected to satisfy

I −X(ρ)Y(ρ) = N(ρ)MT (ρ), ∀ ρ ∈ P. (13)

In order to prevent Ac(ρ) from depending on ρ̇ in those
cases in which ρ̇ ̸= 0, it is assumed that one of the matrix
functionsX(ρ) orY(ρ) is parameter independent. Please
see more details in (Apkarian & Adams, 1998).

3 Low complexity LPV control design

In this section, we propose two procedures to design LPV
controllers with a simpler parameter dependence. As in-
dicated previously, the additional implementation com-
plexity of an LPV controller, with respect to LTI con-
trollers, is in computing matrices (9)-(12) at each step
time for a measured ρ. Therefore, the objective here is to
simplify these expressions in order to make them more
suitable for real-time implementation.

Observing the controller matrix expressions (9)-(12), the
most complex mathematical operations to be performed
at each step time are the matrix inversions of M(ρ) and
N(ρ) and the factorization (13). All these operations can
be computed o�-line ifX(·) andY(·) are taken constant.
Parameter dependent Lyapunov functions allows consid-
ering bounds on ρ̇ and thus reduce conservatism, but this
also limits the hardware in which these controllers can
be implemented. Next, X(·) and Y(·) are considered as
constant matrices in order to present the simplest con-
troller implementation. Nevertheless, the proposed ideas
can be extended to the more general case. Comments on
this regard can be found in Remark 1 at the end of this
section.

Using X(ρ) = X0 and Y(ρ) = Y0 and the auxiliary
variables (8) in (9)-(12), the controller matrices to be
updated at each step time can be written as

[
Ac(ρ) Bc(ρ)

Cc(ρ) Dc(ρ)

]
=

[
Ac,0 Bc,0

Cc,0 Dc,0

]
+

ng∑

i=1

gi(ρ)

[
Ac,i Bc,i

Cc,i Dc,i

]

−
nf∑

i=1

fi(ρ)

[
N−1X0AiY0M

−T 0

0 0

]
, (14)

where N and M are now also constant matrices. This is
a linear combination of constant pre-computed matrices
with parameter dependent weights.
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As mentioned previously, it is common to take gi(·) =
fi(·) (i = 1, . . . , nf ). From the implementation perspec-
tive, it might be interesting to limit the gi(·)'s to a subset
of the fi(·)'s. This will reduce the number of auxiliary
matrices in (8), which implies less decision variables to
be found during the design. Less gi(·) will also reduce
the number of terms in (14) and thus the matrices to
be stored in the embedded system and the number of
mathematical operations to be performed on-line. More-
over, including only those functions fi(·)'s depending on
a subset of parameters, the number of sensors may be
reduced. However, it can be observed in (14) that inde-
pendently of the selected gi(·)'s, the controller matrix
Ac(·) includes terms with fi(·)'s. Therefore, to ensure a
lower complexity parameter dependence, the last term
in (14) should be removed.

To this end, let the system matrix be decomposed as

A(ρ) = As(ρ) +Ar(ρ) (15)

where

As(ρ) = A0 +
∑

i∈I
fi(ρ)Ai, Ar(ρ) =

∑

i∈J
fi(ρ)Ai.

The index set is split into I and J such that

I ∩ J = ∅, I ∪ J = {1, 2, . . . , nf},

and the controller basis functions are taken as

gj(·) = fij (·), ij ∈ I = {i1, . . . , ing
}. (16)

The substitution of (15) in (9) allows us to express the

auxiliary function Â(·) as

Â(ρ) = Ǎ(ρ) +X0Ar(ρ)Y0,

with

Ǎ(ρ) = NAc(ρ)M
T +X0(As(ρ) +B2Dc(ρ)C2)Y0+

X0B2Cc(ρ)M
T +NBc(ρ)C2Y0.

Thus, Ǎ(ρ) is the matrix function to be found instead of

Â(ρ), and the auxiliary functions (8) are substituted by

[
Ǎ(ρ) B̂(ρ)

Ĉ(ρ) D̂(ρ)

]
=

[
Ǎ0 B̂0

Ĉ0 D̂0

]
+

ng∑

i=1

gi(ρ)

[
Ǎi B̂i

Ĉi D̂i

]
, (17)

with the new decision variables Ǎi (i = 0, . . . , ng). Then,

the inequality (5) can be rewritten as

Π(X0,Y0, Ǎ(ρ), B̂(ρ), Ĉ(ρ), D̂(ρ), γ)+

+




0 ⋆ ⋆ ⋆

X0Ar(ρ)Y0 0 ⋆ ⋆

0 0 0 ⋆

0 0 0 0




︸ ︷︷ ︸
Γ(X0,Y0)

< 0. (18)

Using the new auxiliary function Ǎ(ρ) instead of Â(ρ)
as a decision variable in the expression (9)-(12), the con-
troller matrices are

[
Ac(ρ) Bc(ρ)

Cc(ρ) Dc(ρ)

]
=

[
Ac,0 Bc,0

Cc,0 Dc,0

]
+

ng∑

i=1

gi(ρ)

[
Ac,i Bc,i

Cc,i Dc,i

]
,

(19)
hence, eliminating the last term in (14). Unfortunately
(18) is not an LMI and the synthesis problem becomes
nonconvex. Two procedures are proposed to approxi-
mately solve the controller design using convex optimiza-
tion.

Using the fact (Horn & Johnson, 2013) that for a matrix

P =

[
0 Q

QT 0

]
, with Q ∈ Rn×n,

the eigenvalues are λj(Q) = −σj(Q) and λ2n−j+1(Q) =
σj(Q), j = 1, . . . , n, the following holds

¯
λ(Γ(X0,Y0)) = −σ̄(X0Ar(ρ)Y0),

λ̄(Γ(X0,Y0)) = σ̄(X0Ar(ρ)Y0),

and thus (Horn & Johnson, 2013)

λ̄(Π)− σ̄(X0Ar(ρ)Y0) ≤ λ̄(Π + Γ)

≤ λ̄(Π) + σ̄(X0Ar(ρ)Y0),

where the arguments of Π and Γ have been dropped to
ease the notation. The matrix Ar(ρ) is usually sparse,
with rank na ≤ ns. Therefore, applying the singular
value decomposition

Ar(ρ) =
[
U1(ρ) U2(ρ)

] [Σ(ρ) 0

0 0

][
V T
1 (ρ)

V T
2 (ρ)

]
= E(ρ)FT (ρ),

where E(ρ) = U1(ρ)Σ(ρ)
1/2, F (ρ) = V1(ρ)Σ(ρ)

1/2, and
Σ(ρ) ∈ Rna , the following inequality holds

σ̄(X0Ar(ρ)Y0) ≤ σ̄(X0E(ρ))σ̄(Y0F (ρ)).
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With the previous results, the following design proce-
dure can be stated. The aim is to �nd a controller that
minimizes εx and εy, where

σ̄(X0E(ρ)) ≤ εx, σ̄(Y0F (ρ)) ≤ εy

and satis�es (6) and (18).

Procedure 1 Select a desired index set J and basis
functions gi(·), i = 1, . . . , ng, according to (16). Then,

�nd symmetric matrices X0 and Y0, matrices Ǎi, B̂i,
Ĉi and D̂i according to (17), and positive scalars γ, εx
εy that minimize

L1 = γ + q(εx + εy)

subject to:

Π(X0,Y0, Ǎ(ρ), B̂(ρ), Ĉ(ρ), D̂(ρ), γ) < 0,
[

Ins
X0E(ρ)

ET (ρ)X0 Inaεx

]
> 0,

[
Ins

Y0F (ρ)

FT (ρ)Y0 Inaεy

]
> 0,

[
X0 Ins

Ins
Y0

]
> 0,

for all ρ in a grid of points Pg ⊂ P and a given weight
q > 0.
Then, check if there exists a γ such that, with the obtained
variables X0, Y0, Ǎi, B̂i, Ĉi and D̂i, the conditions (6)
and (18) are satis�ed, otherwise increase q and repeat
the design.

Procedure 1 seeks to exploit the fact that Ar(ρ) can be
sparse. Thus, with a su�ciently large q, σ̄(X0Ar(ρ)Y0)
will be small and λ̄(Π) will be close to λ̄(Π + Γ). How-
ever, technically λ̄(Π) ≈ λ̄(Π + Γ) does not imply that
(18) holds. For this reason, as indicated in the last part
of Procedure 1, it is necessary to check if the computed
matrices satisfy the inequalities and repeat the optimiza-
tion with a larger penalization over εx and εy, if needed.
Even if the found matrices satisfy (6) and (18), the per-
formance level γ will be probably lower that the one ob-
tained during the last veri�cation. Hence, it can be as-
sumed that Procedure 1 will produce an optimistic de-
sign.

In order to avoid the last iterative step at the expense
of introducing certain conservatism, consider the matrix
Ψ(X(ρ),Y(ρ), Ǎ(ρ), B̂(ρ), Ĉ(ρ), D̂(ρ), γ) given in (20),
which is obtained by adding the positive semi-de�nite

matrix

Λ(X0,Y0) =




Y0F (ρ)FT (ρ)Y0 ⋆ ⋆ ⋆

0 X0E(ρ)ET (ρ)X0 ⋆ ⋆

0 0 0 ⋆

0 0 0 0




to Π+ Γ and taking into account that Π+ Γ + Λ is the
Schur complement of Ina

in Ψ. Then, considering the
following eigenvalue inequalities

λ̄(Π + Γ) + λ̄(Λ) ≤ λ̄(Ψ), and λ̄(Λ) ≥ 0,

the second design procedure can be stated.

Procedure 2 Select a desired index set J and basis
functions gi(·), i = 1, . . . , ng, according to (16). Then,

�nd symmetric matrices X0 and Y0, matrices Ǎi, B̂i,
Ĉi and D̂i according to (17), and positive scalar γ that
minimize

L2 = γ

subject to:

Ψ(X0,Y0, Ǎ(ρ), B̂(ρ), Ĉ(ρ), D̂(ρ), γ) < 0,
[
X0 Ins

Ins
Y0

]
> 0,

for all ρ in a grid of points Pg ⊂ P.

In order to determine the most suitable decomposition
(15), the following fact is used

σ̄(X0Ar(ρ)Y0) ≤ σ̄(X0)σ̄(Ar(ρ))σ̄(Y0)),

and, from the expression of Ar(ρ), that

σ̄(Ar(ρ)) ≤
∑

i∈J
|fi(ρ)|σ̄(Ai), ∀ ρ ∈ P.

Hence, if

σ̄(A0) +
∑

i∈I
|fi(ρ)|σ̄(Ai) ≫

∑

i∈J
|fi(ρ)|σ̄(Ai), (21)

for all ρ ∈ P, then it can be assumed that X0A(ρ)Y0 ≈
X0As(ρ)Y0 and the e�ect on the closed-loop perfor-
mance, due to the simpli�cation of the controller param-
eter dependence, may be negligible.

Remark 1 In case of using parameter dependent Lya-
punov functions, the proposed procedures are still useful
to simplify the controller expressions, e.g. to reduce the
number of measured parameters. The controller matrices
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Ψ(X0,Y0, Ǎ(ρ), B̂(ρ), Ĉ(ρ), D̂(ρ), γ)

=




A(ρ)Y0 +B2Ĉ(ρ) + (⋆) ⋆ ⋆ ⋆ ⋆

Ǎ(ρ) + (A(ρ) +B2D̂(ρ)C2)
T X0A(ρ) + B̂(ρ)C2 + (⋆) ⋆ ⋆ ⋆

(B1(ρ) +B2D̂(ρ)D21)
T (X0B1(ρ) + B̂(ρ)D21)

T −γInw
⋆ ⋆

C1(ρ)Y0 +D12Ĉ(ρ) C1(ρ) +D12D̂(ρ)C2 D11(ρ) +D12D̂(ρ)D21 −γInz ⋆

FT (ρ)Y0 ET (ρ)X0 0 0 −Ina




(20)

will consist of more terms, as a result of cross terms like
gi(ρ)gj(ρ) and those associated to X(ρ) or Y(ρ). How-
ever, in spite of these additional terms, the controller
parameter dependence can be imposed with a suitable se-
lection of the basis functions gi(·), hi(·) and ℓi(·).

Remark 2 The griding procedure can be avoided by con-
sidering each fi(ρ) as independent parameters θi taking
values in an hypercube Θ. Thus, model (1) is a�ne in θ
and it is su�cient to evaluate (5) and (6) at the vertices
of the new parameter set Θ. However, as each new pa-
rameter is assumed to vary independently from the oth-
ers, this overbounding of the parameter space might re-
sult in signi�cant performance degradation. Moreover, it
is also common to express the controller as a polytopic
LPV system, i.e.,

[
Ac(θ) Bc(θ)

Cc(θ) Dc(θ)

]
=

2np∑

i=1

αi(θ)

[
Ac,i Bc,i

Cc,i Dc,i

]
,

where

0 ≤ αi ≤ 1,

2np∑

i=1

αi = 1, and θ =

2np∑

i=1

αiθ
i (22)

with θi the vertices of Θ. The convex decomposition (22)
is an additional computation step to be performed online.
Besides, compared with the LPV description (14), more
matrices must be stored for the real-time implementation.
In (Kwiatkowski & Werner, 2008), a procedure based on
PCA is proposed to reduce the number of θi and �nd a
tighter Θ. However, there is no guarantee that the new
parameter space will be less conservative. Instead, in the
scheme proposed here, the controller complexity is inde-
pendent of the number of points in the parameter grid
used to design it. Moreover, there is no approximation of
the LPV plant, only a reduction of the set in which the
controller is sought.

4 Example

In order to illustrate the proposed implementation-
oriented design, we consider the following nonlinear sys-
tem inspired by the two degree-of-freedom bicycle model

used in (Morera-Torres, Ocampo-Martinez & Bianchi,
2022) to control electric vehicles

ẋ1 = −Cf (x1) + Cr

mv
x1 −

(
1 +

(Cf (x1)− Cr) l

m v2

)
x2,

ẋ2 =
(Cr − Cf (x1)) l

J
x1 −

(Cr + Cf (x1)) l
2

J v
x2 +

10000

J
u,

where m = 300 kg, J = 100 kgm2, l = 0.8m, Cr =
36000N/rad, Cf (x1) = 14000/(1100x2

1 + 1) [N/rad], v
an external parameter and y = x2 the controlled output.
This is a practical application that will be considered
here as an illustrative example of this technique.

This nonlinear system can be cast as a quasi-LPVmodel:

Gp(ρ)




ẋp =

(
Ap,0 +

5∑

i=1

fi(ρ)Ap,i

)
xp +Bpu,

y = Cpxp

taking xp = [x1 x2]
T , ρ = [ρ1 ρ2]

T ∈ P = [−0.2 0.2] ×
[5 28], ρ1 = x1, ρ2 = v, functions

f1(ρ) = Cf (ρ1), f2(ρ) = Cf (ρ1)/ρ2, f3(ρ) = 1/ρ2,

f4(ρ) = Cf (ρ1)/ρ
2
2, f5(ρ) = 1/ρ22.

and

Ap,0 =

[
0 −1

Crl
J 0

]
, Ap,1 =

[
0 0

− l
J 0

]
, Ap,2 =

[
− 1

m 0

0 − l2

J

]
,

Ap,3 =

[
−Cr

m 0

0 −Crl
2

J

]
, Ap,4 =

[
0 − l

m

0 0

]
, Ap,5 =

[
0 Crl

m

0 0

]
,

Bp = [0 10000
J

]T , Cp = [0 1].

The control speci�cations are given by the control setup
shown in Figure 1, where

We(s) = 20
s/100 + 1

s+ 1
, Wu(s) = 0.1

s/2.5 + 1

s/250 + 1
.
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−
r

e
K(ρ) Gp(ρ)

u

ρ

We

ẽ

Wu

ũ

Figure 1. Control synthesis setup

The LPV model (1)-(2) is obtained interconnecting
Gp(ρ) with the previous weights according to Figure 1.
For this resulting model

σ̄(A0) = 288.00, max
ρ∈P

|f1(ρ)|σ̄(A1) = 109.51,

max
ρ∈P

|f2(ρ)|σ̄(A2) = 17.85, max
ρ∈P

|f3(ρ)|σ̄(A3) = 37.85,

max
ρ∈P

|f4(ρ)|σ̄(A4) = 1.49, max
ρ∈P

|f5(ρ)|σ̄(A5) = 3.71,

which suggest that it would be reasonable to exclude the
terms 4, 5 and even 2 from the controller expressions.

For sake of comparison, several LPV controllers were de-
signed with a grid of 25 points using SeDuMi (Sturm,
1999) and YALMIP (Löfberg, 2004) to solve the opti-
mization problems. The results are summarized in Ta-
ble 1. The controller Kf was designed including all
terms (J = ∅) and the others taking J1 = {4, 5} and
J2 = {2, 4, 5}. The controllers Kp1,j (j = 1, 2) were de-
signed using Procedure 1 with q = 0.0001 and Kp2,j us-
ing Procedure 2. The values γreal were obtained checking
the performance condition (4) for the closed-loop system
with the previous controllers. It can be observed that
although Procedure 1 is optimistic (γ < γreal) and Pro-
cedure 2 is conservative (γ > γreal), all controllers are
stabilizing as both procedures produce controllers that
satisfy (5) and (6). Clearly, a simpler controller exclud-
ing the terms in J2 results in higher γ's, i.e., in lower
performance levels.

Figure 2 shows step responses obtained with controllers
Kf , Kp1,j and Kp2,j , j = 1, 2. To ease the comparison,
several characteristic values are provided: the rise time
tr, the settling time ts, the overshootMp, and the steady
state error ess. A slight performance degradation can be
observed with controllers Kp1,1 and Kp2,1 as compared
to Kf . In particular, the simpler controllers present less
uniform responses indicating lower capability to adapt
themselves to di�erent working conditions. On the other
hand, the performance degradation is more marked in
the case of controllers Kp1,2 and Kp2,2, which corre-
sponds with the estimation given by |f2(ρ)|σ̄(A2).

With the aim of comparison, a controller Kpol was de-
signed by modelling the nonlinear system as a polytopic
LPVmodel with parameters θi = fi(ρ), i = 1, . . . , 5. The

parameter set was de�ned as Θ = [
¯
f1 f̄1]×· · ·× [

¯
f5 f̄5],

Table 1
Synthesis results

Procedure 1 Procedure 2

J Ctrl γ γreal Ctrl γ γreal

∅ � � � Kf 1.003 1.003

{4, 5} Kp1,1 1.422 1.865 Kp2,1 3.679 2.676

{2, 4, 5} Kp1,2 1.779 1818 Kp2,2 11.770 5.542

Polytopic LPV Reduced by PCA

Ctrl γ Qty. param. Ctrl γ Qty. param.

Kpol 2.49 5 Kred 20.14 3

Structured LPV

Ctrl γ γreal

Kst 0.99 ∞

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

0

0.5

1

1.5

y

0.02 ≤ tr ≤ 0.42
0.12 ≤ ts ≤ 0.76

0.00 ≤ Mp ≤ 31.99
0.04 ≤ ess ≤ 0.24

0.04 ≤ tr ≤ 0.12
0.19 ≤ ts ≤ 0.50

0.08 ≤ Mp ≤ 23.44
0.01 ≤ ess ≤ 0.07

Kp1,2 Kp2,2

0

0.5

1

1.5

y

0.02 ≤ tr ≤ 0.06
0.12 ≤ ts ≤ 0.22

2.01 ≤ Mp ≤ 20.98
0.01 ≤ ess ≤ 0.03

0.04 ≤ tr ≤ 0.09
0.13 ≤ ts ≤ 0.43

0.70 ≤ Mp ≤ 24.62
0.01 ≤ ess ≤ 0.05

Kp1,1 Kp2,1

0

0.5

1

1.5

y

0.04 ≤ tr ≤ 0.09
0.10 ≤ ts ≤ 0.19
0.00 ≤ Mp ≤ 7.95
0.02 ≤ ess ≤ 0.05

Kf

Figure 2. Step responses of the closed-loop system with the
controllers listed in Table 1 at several frozen parameter val-
ues, where tr is the rise time, ts the settling time, Mp the
overshoot, and ess the steady state error.

with
¯
fi = minρ∈P fi(ρ) and f̄i = maxρ∈P fi(ρ). The

performance level in this case was γ = 2.49. The result-
ing controller consists of 32 terms and the control action
must be computed after solving a convex decomposi-
tion (22) of 32 vertices. Using the procedure proposed in
(Kwiatkowski & Werner, 2008; Ho�mann et al., 2014),
the parameter dimension was reduced to 3 in order to
design theKred controller. Unfortunately, in this partic-
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ular example the performance level shows a signi�cant
degradation: γ = 20.14. These results are summarized
in Table 1.

As an additional comparison, a structured gain sched-
uled controller Kst was designed using the methodology
proposed in (Gahinet & Apkarian, 2013). The controller
structure was selected similar to the controllers Kp1,1

and Kp2,1, i.e., removing terms 4 and 5, and using the
design setup in Figure 1. The performance level results
γ = 0.99, but this controller cannot ensure quadratic
stability as the γreal is in�nity. This implies that the
closed-loop stability will deteriorate for fast parameter
variations. The corresponding results are shown in Ta-
ble 1.

In Figure 3, it can be seen simulation results correspond-
ing to the closed-loop system using controllersKf ,Kp1,1

and Kp2,1 on the nonlinear model. The parameter tra-
jectories are shown in the middle and bottom plots, re-
spectively. Notice that ρ1 is a state and its trajectory
is given by the closed-loop behavior and the external
parameter ρ2. Nevertheless, the parameter ρ1 remains

inside the interval [−0.2 0.2]. The evolution of the cor-

responding controlled output y is in accordance to the
results observed in Figure 2, although for the particu-
lar parameter trajectory the performance degradation
is smaller. Figure 4 compares the closed-loop responses
Kp2,1, Kred, and Kst in the previously described sce-
nario. It can be observed that the conservatism of Kred

results in a poorer reference tracking. On the other hand,
the lack of quadratic stability guarantees, in the case of
Kst, yields more oscillatory responses when the param-
eters change.

The performance level in Table 1 and the closed-loop
responses in Figures 2 and 3 allow us to evaluate possi-
ble implementations. The controller order is 4, therefore
each matrix in (19) has dimension 5×5. Then the use of
controllersKp1,1 andKp2,1 implies a reduction of 33.3%
in the number of variables to be stored, and 50% in the
case Kp1,2 and Kp2,2 are used. Besides there is a reduc-
tion in the number of mathematical operations. On the
other hand, the reduced polytopic controller Kred re-
quires the storage of 9 local controllers and the compu-
tation of a convex decomposition. Whereas, the struc-
tured gain-scheduled controller Kst presents a similar
implementation complexity than Kp1,1 and Kp2,1, how-
ever it cannot guarantee quadratic stability. In any case,
the proposed methodology also provides tools to evalu-
ate the e�ects of the controller simpli�cation.

5 Conclusions

This article proposes a methodology to design LPV con-
trollers with lower implementation complexity and to
evaluate the e�ects of these simpli�cations on the closed-

0 1 2 3 4 5 6

Time (s)
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20

30

ρ
2

-0.2

-0.1

0

0.1

0.2

ρ
1

-1

-0.5

0

0.5

1

y

Reference

Kf

Kp1,1

Kp2,1

Figure 3. Comparison of the closed-loop responses using the
full controller Kf , and the simpli�ed Kp1,1 and Kp2,1 on the
nonlinear bicycle model.
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Figure 4. Comparison of the closed-loop responses using the
controllers Kp2,1, Kst, and Kred on the nonlinear bicycle
model.
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loop performance. The aim is to simplify the implemen-
tation by reducing the mathematical operations to be
performed at each time step, the number of matrices
to be stored and, depending on the particular plant,
the number of measured parameters. This reduction in
the implementation complexity may be useful to apply
LPV controls in low computational-power systems and
possibly reduce the number of sensors. Clearly, impos-
ing a parameter dependence limits the set of stabilizing
controllers and may a�ect the closed-loop performance.
For this reason, guidelines to estimate the compromise
between implementation complexity and performance
degradation is proposed here.
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