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Automatic glucose control during meals and
exercise in type 1 diabetes: Proof-of-concept in

silico tests using a switched LPV approach
P. H. Colmegna, F. D. Bianchi, and R. S. Sánchez-Peña, Senior Member, IEEE

Abstract— Keeping the blood glucose levels within the
safe range during meals and exercise still represents a
major hurdle not only for patients with type 1 diabetes
(T1D), but also for Artificial Pancreas (AP) systems. One
of the reasons a fully (autonomous) closed-loop solution
has not been released onto the market yet is the slow
action of current insulin analogs. To partially overcome this
limitation, the authors have previously designed a switched
control strategy equipped with an insulin-on-board (IOB)
safety loop that mitigates meal-related glucose excursions
without carbohydrate counting. In this paper, a similar strat-
egy based on a Linear Parameter-Varying (LPV) control law
has been adapted to safely handle also exercise challenges
with minimum user intervention. In silico results using the
UVA/Padova simulator evidence that the proposed closed-
loop scheme is feasible under moderate-intense exercise
bouts by effectively and safely reducing the risk of hypo-
glycemia.

Index Terms— Artificial pancreas, physical activity,
switched LPV control, unannounced meals.

I. INTRODUCTION

THE ultimate goal of an Artificial Pancreas (AP) system
is to provide fully automated blood glucose control for

patients with Type 1 Diabetes (T1D). Generally, a minimally
invasive approach is used, where both glucose measurement
and insulin infusion are performed subcutaneously via a Con-
tinuous Glucose Monitoring (CGM) sensor and a Continuous
Subcutaneous Insulin Infusion (CSII) pump.

The design of an AP controller encounters several problems
such as delays and errors, both in glucose measurement and
insulin infusion, model nonlinearities, and large inter– and in-
trapatient uncertainties. Nowadays, the main limitation for AP
systems is the significant delay introduced by current insulin
analogs that can lead to insulin stacking, limiting the achiev-
able performance of glucose controllers. The reader is referred
to [1] and [2] for a complete review of these challenges.

Although numerous AP studies were performed around the
world (a recent worldwide update can be found in [3]), there
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are only two commercial insulin pumps with AP systems,
and both still require patient intervention during meals and
exercise: the Minimed 670G [4], and the Tandem t:slim x2
with Basal-IQ/Control-IQ [4]–[6].

Moderate-intensity exercise is particularly challenging to
control, because it triggers an increase in subject’s insulin
sensitivity that can last several hours. Due to the slow dynam-
ics of current insulin analogs, guidelines recommend patients
on pumps reduce their basal rates up to two hours prior
to exercise and consume carbohydrates to prevent exercise-
induced hypoglycemia [7]. However, this approach should
be taken cautiously to avoid carbohydrate over-consumption
and lack of insulin that can ultimately lead to hyperglycemia.
Previous AP strategies that address this problem can be found
in [8]–[13] and a recent survey, in [14].

The strategy adopted in this work is mainly based on
previous work by the authors, but with the addition of a
series of innovations that aim at reducing patient burden by
minimizing their intervention in the closed-loop strategy. To
this end, an inner Switched Linear Parameter Varying (SLPV)
controller that has two operating modes: one conservative and
one aggressive [15], [16], is combined with an outer sliding-
mode safety layer (SAFE) that limits the controller’s action
based on the residual active insulin (or IOB) [17]. This is
the first time that the SLPV is combined with the SAFE
layer, since in previous in silico and in vivo studies, the inner
controller was represented by a switched Linear Quadratic
Gaussian (LQG) controller [18], [19].

There is an undeniable compromise between patient’s au-
tonomy and closed-loop performance, particularly subject to
disturbances. The announced/unannounced disturbances play
an important role in patient’s autonomy. The contribution of
this work is a proof-of-concept group of simulations performed
using the Food and Drug Administration (FDA)-accepted
UVA/Padova metabolic simulator under multiple meal and
exercise disturbances. It tests and validates the feasibility
of the proposed AP system without meal announcement
and/or Carbohydrate (CHO) count, considering the perfor-
mance degradation when exercise is not announced.

In this work, Hyperglycemia Detection (HD) module com-
mands which control mode is selected. When persistent hy-
perglycemia is detected, for instance, after a meal ingestion,
the controller switches into the aggressive mode and the IOB
constraint is relaxed, allowing the AP system to inject more



Mode selector

SLPV+SAFE

IOBcontroller mode

CGM system

Insulin pump Patient

Exercise announcement

HR
Hyperglycemia

detector

Glucose concentration

Fig. 1. Block diagram of the AP strategy. HR: Heart Rate, IOB: Insulin
On Board constraint, SAFE: Safety Auxiliary Feedback Element, SLPV:
Switched LPV.

insulin and quickly mitigate the glucose excursion. Also, a new
Mode Selection (MS) algorithm has been added to combine
the HD module with Heart Rate (HR) data1, and automatically
adjust the controller’s settings in case of meals and/or exercise.

The paper is organized as follows: Section II briefly de-
scribes previous work in which this procedure is based, and
presents the new modules that have been added to the AP
strategy. Sections III and IV present the simulations and the
resulting conclusions, respectively.

II. CONTROL STRATEGY DESIGN

A sketch of the new proposed AP strategy is presented in
Fig. 1. At the core of the scheme are the SLPV controller and
SAFE layer. Every five minutes, this controller computes an
insulin dose and the SAFE limits, if a predefined IOB limit
is going to be violated, the control signal to minimize the
risk of hypoglycemia. The novelty in this new approach is
the MS algorithm that modifies the SLPV and SAFE settings
according to meal and exercise data.

A. Switched LPV controller
The SLPV strategy consists of two controllers Kj(ρ) with

j ∈ {1, 2} that are designed for the control-oriented LPV
model presented in [20]:

G(ρ) :

{
ẋ(t) = A(ρ)x(t) +Bu(t− τ)
g(t) = Cx(t)

(1)

where the input u corresponds to the subcutaneous insulin
infusion (in pmol/min) and the output g is the glucose con-
centration deviation (in mg/dl) obtained from the CGM, and

A(ρ) =



0 1 0
0 0 1
0 −p2p3 −(p2 + p3)


+

ρ




0 0 0
0 0 0

−p2p3 −(p2 + p3) −1


 ,

B =
[
0 0 1

]T
, C = k

[
z 1 0

]
.

Parameters z, p2, p3, and τ are fixed to population values
(z = 0.1501, p2 = 0.0138, p3 = 0.0143, and τ = 15), k
is a constant based on the patient’s Total Daily Insulin (TDI)

1An alternative without the use of an HR monitor could also be explored
as indicated in [13], but will not be developed here.

TABLE I
PARAMETER VALUES OF ρ(g) OF (2).

i qi ri si ti

1 0 0 −3.432× 10−6 4.470× 10−3

2 0 9.058× 10−8 −5.356× 10−5 1.135× 10−2

3 −4.238× 10−8 1.140× 10−5 −9.167× 10−4 2.584× 10−2

4 0 1.732× 10−4 −2.308× 10−2 7.712× 10−1

5 0 0 −2.833× 10−5 1.408× 10−2

−
r

Kj(ρ)
e

G(ρ)
u

ρ

Wp

ẽ
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ũ

Fig. 2. LPV control design setup for each Kj(ρ) with j ∈ {1, 2}.

[20], and ρ is a piecewise-polynomial function of the measured
glucose concentration:

ρ(g) = qig
3 + rig

2 + sig + ti, (2)

where:

i =





1 if 300 mg/dl ≤ g
2 if 110 mg/dl ≤ g < 300 mg/dl
3 if 65 mg/dl ≤ g < 110 mg/dl
4 if 59 mg/dl ≤ g < 65 mg/dl
5 if g < 59 mg/dl.

(3)

and the polynomial coefficients are given in Table I. Parameter
τ represents an average delay in insulin appearance in the
subcutaneous depot from where insulin is slowly absorbed into
plasma (see [21], [22]).

Controller K1(ρ) performs slight changes on the basal in-
sulin infusion rate, whereas K2(ρ) responds more aggressively
to glucose changes and is triggered only when hyperglycemia
is detected. The LPV control design setup is shown in Fig. 2,
where ẽ and ũ are obtained after weighting the glucose error
e = r− g and the control action u (insulin infusion) with the
following weights:

Wp(s) = 100
10s+ 1

5000s+ 1
, (4)

Wu,j = ku,j , (5)

Index j ∈ {1, 2} corresponds to the controller mode in the
switching strategy (ku,1 = 0.07 and ku,2 = 0.5). Weight
Wp(s) penalizes glucose deviations from the basal value r
(around 120 mg/dl), and weight Wu penalizes changes in
insulin delivery [16]. Note that the LPV model G(ρ) is affine
in the parameter ρ, therefore each controller Kj(ρ) can be
computed with tools like hinfgs available in Matlab. The
controller switching is implemented as indicated in [23].
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Fig. 3. Example of how the HD module works. The blue bars indicate
when hyperglycemia is detected and the controller switches into the
aggressive mode. The dash black line indicate the threshold of 0.03
mg2/dl2/min.

B. SAFE unit

The SAFE unit is a sliding-mode safety layer that adapts
the SLPV controller’s gain based on IOB constraints. Its aim
is to maintain the estimated IOB below a predefined patient-
specific constraint, indicated as IOB. For this purpose, this unit
produces a signal γ ∈ [0, 1] that modulates the insulin imposed
by the SLPV controller. A detailed description of this safety
layer can be found in [17] and [18]. As in [18], it is considered
that IOBs = IOBb + 40 g/CR and IOBm = IOBb + 55 g/CR,
where IOBb is the estimated IOB value at basal input rate and
CR is the subject-specific insulin-to-carbohydrate ratio in U/g.
In this work, the constraint IOB is set by the MS unit as will
be described in the next section.

C. Hyperglycemia detection module

The HD module determines which LPV controller should
be selected based on the following algorithm. Current glucose
value and rate of change are estimated using the Kalman
filter presented in [24]. Estimated glucose concentration ĝ and
its derivative ˙̂g are saturated at zero (only positive values
are considered), and multiplied together sat(ĝ) · sat( ˙̂g) in
order to reflect the joint magnitude increase of both variables.
The output is a signal that will be approximately zero most
of the time, except when glucose rapidly increases where a
peak will be observed. If the size of the peak surpasses 0.03
mg2/dl2/min, the HD module will indicate that the aggressive
mode should be selected. It is important to highlight that the
goal of this module is not to perfectly detect meal events,
but to detect hyperglycemic situations that require a more
aggressive response of the controller. For safety purposes, the
HD is blocked during the night or when the exercise mode is
active. An example of how the HD works is presented in Fig.
3.

D. Heart rate model

In this work, the first-order exercise model in [25] is used
to relate treadmill velocity v to HR:

HR =
kHR

τHRs+ 1
v (6)

This model represents deviations around linearized values for
both v and HR, in the absence of low frequency (upward)
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Fig. 4. IOB surface as a function of g and ġ. The IOB is expressed
as percentage of IOBb.

drift of HR, as observed during prolonged moderate-vigorous
intensity running. Since results show that there are small
differences in the identified parameters for moderate and
intense levels, the mean value of kHR and τHR parameters
will be considered in the upcoming simulations, i.e. kHR =
24.2 bpm/(m/s), τHR = 57.6 sec. Given those parameters,
velocity v is estimated to reach a HR of 120 bpm (2 times the
basal HR) in accordance with what is reported in [26].

E. Mode selection module

The MS unit supervises the controller to prevent hyper-
and hypoglycemia events after meals and exercise. This unit
gathers HR data, an exercise announcement signal provided
manually by the patient, and information from the HD module.
After processing these data, two outputs are generated: the
switching signal j for the SLPV controller, and the Insulin
on Board (IOB) limit (IOB) for the SAFE layer. The mode
selection is implemented as a logic unit with several timers.
This unit takes into account HR measurements, exercise an-
nouncement and meal detection, and keeps records of the time
in each mode in order to decide which mode must be applied.
Stability is evaluated by using the same methodology as in a
previous result by the authors [23], i.e., computing a Single
Quadratic Lyapunov Function (SQLF) for each controller
in order to guarantee closed loop stability under arbitrary
switching amongst controllers [27].

Four operation modes are included:
1) Conservative mode: The conservative controller K1(ρ)

is used in combination with IOB = IOBs.
2) Aggressive mode: When hyperglycemia is detected, the

LPV controller is switched to K2(ρ), and IOB is set to
IOBm.

3) Exercise mode: The exercise mode is triggered when
the patient announces exercise at tex− tan, with tex the
exercise start time and tan the anticipation time. This
mode remains active for 60 minutes if no exercise is
detected or until 60 min after the end of the detected
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Fig. 5. Top: Median ADRR values for different anticipation times. The
blue dot highlights the optimal tan. Bottom: IOB surface projection
onto the ĝ and ˙̂g axes. Each dot represents the estimated glucose
condition at tex − tan.

exercise bout. During this mode the LPV controller is
switched to K1 and IOB is set to a fixed value obtained
from the surface illustrated in Fig. 4. As shown, IOB
during the exercise mode will be a percentage of IOBb,
depending on the estimated glucose concentration ĝ and
its derivative ˙̂g at the moment exercise is announced.

4) Post-exercise mode: To minimize the risk of hypo-
glycemia as a consequence of an increased in insulin
sensitivity, the exercise mode is followed by a post-
exercise mode in which IOB is set to IOBs for the
following 8 hours. Nonetheless, switching to the ag-
gressive controller is still allowed during this mode to
reduce risk of hyperglycemia when detected.

F. Optimal anticipation time estimation
In order to determine the optimal tan that minimizes both

risks of hypo- and hyperglycemia, 8-hour experiments were
carried out considering the 10 in silico subjects of the distri-
bution version of the UVA/Padova simulator integrated with
the exercise model reported in [26]. Each in silico subject
underwent a 30-minute long moderate exercise bout under
multiple initial conditions for different tan times, ranging from
0 to 60 min in 10 min steps. Current glucose value and rate of
change were estimated from the Kalman filter, and IOB was
set using the surface presented in Fig. 4. Results are illustrated
in Fig. 5. The bottom plot indicates where glucose conditions
laid in the ĝ- ˙̂g plane when exercise was announced. For each

Fig. 6. Closed-loop response for Adult #1. Green bars represent the
meal times, dark grey regions indicate when the aggressive mode is
selected, light grey regions, when the exercise mode is active and blue
regions, the exercise period.

experiment, the Average Daily Risk Range (ADRR) value [28]
was computed to obtain an index that weights both hypo- and
hyperglycemia risks. In the top plot of Fig. 5, the median
ADRR values are plotted against the evaluated tan values. Note
that the minimum ADRR is obtained with tan = 30 min; if
tan < 30 min, the risk of hypoglycemia increases, while if
tan > 30 min, the risk of hyperglycemia increases.

III. RESULTS

Simulations have been carried out for all 10 in silico adults
of the distribution version of the UVA/Padova simulator with
three meals:

• 40 g meal at 7 AM,
• 70 g meal at 12 PM, and
• 60 g meal at 7 PM

a 30-min bout of moderate exercise at 4 PM, which is
announced to the controller with an anticipation of 30 minutes,
and no hypo-treatments. Although no intraday variability is
included in this version of the simulator, the authors have
previously considered it from the control standpoint: as un-
certainty in [16] and as a time-varying parameter in an
LPV control-oriented model in [29]. Therefore, the current
implementation can be extended in a straightforward manner
to handle intraday variations. Also, it is worth highlighting that
simulations include measurement noise, and that robustness is
accounted for by inter-patient variability, both implemented
already in the UVa/Padova simulator.

In order to show how the control system works, an individ-
ual closed-loop response is illustrated in Fig. 6. There, meals
are represented by the green bars, and exercise is indicated
by the blue region. The dark gray regions indicate when



TABLE II
AVERAGE CLOSED-LOOP RESULTS FOR ALL in silico ADULTS WITH THE PROPOSED CONTROL STRATEGY FOR BASELINE AND CASES 1 TO 3. LGBI:

LOW BLOOD GLUCOSE INDEX, HBGI: HIGH BLOOD GLUCOSE INDEX, IQR: INTERQUANTILE RANGE. [28].

Baseline Case 1 Case 2 Case 3
Overall Mean Median IQR Mean Median IQR Mean Median IQR Mean Median IQR

Average blood glucose (mg/dl) 131.5 131.5 5.4 133.2 133.5 5.1 125.6 125.3 4.4 128.3 127.9 5.0
Coefficient of variation (%) 24 25 5 25 25 4 26 26 5 25 25 5
% time < 70 mg/dl 0 0 0 0 0 0 1.4 0 2 0 0 0
% time in [70, 140] mg/dl 68.2 68.6 6.8 65.9 65.7 9.7 71.2 71.2 8.2 71.3 72.2 6.3
% time in [70, 180] mg/dl 89.0 90.3 9.6 88.0 89.6 6.1 90.4 90.4 5.6 90.9 92.8 7.4
% time > 180 mg/dl 11.0 9.7 9.6 12.0 10.4 6.1 8.2 5.7 5.4 9.1 7.3 7.4
LBGI 0.23 0.20 0.20 0.32 0.32 0.31 0.62 0.59 0.59 0.45 0.35 0.32
HBGI 2.30 2.08 0.68 2.49 2.38 0.68 1.92 1.73 0.68 2.06 1.77 0.44

Exercise period (3 PM - 7 PM)

Average blood glucose (mg/dl) 128.1 127.5 10.9 141.0 139.6 17.6 112.7 112.8 10.6 132.4 130.5 15.6
Coefficient of variation (%) 15 16 6 7 7 7 28 26 6 11 12 5
% time < 70 mg/dl 0 0 0 0 0 0 8.1 0 9.5 0 0 0
% time in [70, 140] mg/dl 69.4 69.3 27.0 52.7 62.9 62.7 64.9 66.4 22.0 71.6 69.9 22.0
% time in [70, 180] mg/dl 98.1 100 0 98.1 100 0 90.0 94.4 16.6 98.1 100 0
% time > 180 mg/dl 1.9 0 0 1.9 0 0 1.9 0 0 1.9 0 0
LBGI 0.09 0.08 0.14 0 0 0 2.24 2.03 0.93 0.01 0 0.01
HBGI 1.40 1.21 0.97 2.13 1.79 2.04 1.21 1.11 0.94 1.47 1.15 1.12

the aggressive controller K2 is selected, and the light gray
regions, when the exercise mode is active. It is clear how the
IOB modulation is instrumental in keeping the glucose level
within safe margins. After meals, IOB is increased to allow the
aggressive controller to inject more insulin if needed. Instead,
in the region where exercise is announced, the IOB limit is
lowered to make the controller reduce the insulin infusion in
advance, preventing exercise-related hypoglycemia. Note that
IOB implies only a limit and not the exact amount of insulin
to be commanded by the AP system2.

Complete results have been structured in four cases:
• Baseline: no exercise – unannounced
• Case 1: no exercise – announced
• Case 2: exercise – unannounced
• Case 3: exercise – announced
Closed-loop responses for all these cases are illustrated

in Fig. 7. As expected, exercise-induced hypoglycemia is
observable in Case 2, whereas in all other cases, glucose values
remain within safe bounds.

Average closed-loop results for all in silico adults are
grouped in Table II-F based on time consensus outcome met-
rics for glucose controllers’ performances described in [31].
In Case 2, greater time in hypoglycemia is observed, specially
in the time interval between 3 PM and 7 PM, reaching a mean
percentage of time below 70 mg/dl of 8.1%. This increase in
the risk of hypoglycemia is also accompanied by a marked
increase in the coefficient of variation (CV), mainly caused
by the delayed reaction of the controller to exercise-induced
hypoglycemia. It is worth highlighting that even when exercise
is announced but not performed (Case 1), the mean increase
in time spent in hyperglycemia (% time > 180 mg/dl) with
respect to baseline is negligible (overall: 1%, 3 PM - 7 PM:
0%). This desired behavior is, in part, due to the fact that
the Exercise mode is terminated after 60 min if no exercise

2An ongoing research collaboration of the authors is the exploration of a
time-varying adaptive IOB limit, like the one presented in [30].

Fig. 7. Closed-loop responses for baseline (upper) and cases 1 to
3 (lower) with the proposed closed-loop strategy. The thick lines are
the median values (glucose and insulin), and the boundaries of the
filled areas are the 5th and 95th percentiles (glucose). The gray region
reflects the time in exercise mode and the blue area, the exercise period.
The dashed black lines indicate the boundaries of the target zone [70-
180] mg/dl.



is detected. Here, Case 2 quantifies the compromise between
patient’s autonomy (not involved in announcing exercise), vs
performance (increase in the risk of hypoglycemia).

IV. CONCLUSIONS

In this paper, a previous AP strategy was adapted for
safely controlling glucose under exercise challenges. When
the patient announces that he/she will exercise, the SAFE layer
automatically adjusts the IOB limit, IOB, based on the current
glucose value and rate of change. This allows the controller to
take precautionary action and compensate for delays in insulin
action. In silico results using the FDA-accepted UVA/Padova
simulator were obtained, showing the efficacy of the pro-
posed strategy under multiple meal and exercise conditions.
In addition, the performance degradation when exercise is
not announced is also accounted for to illustrate that given
the slow dynamics of current insulin analogs, there is still
an undeniable compromise between patient’s autonomy and
closed-loop performance that has to be taken into account as
a starting point in any AP design.
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