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Abstract

The purpose of this work is to compute a Linear Parameter-Varying (LPV) model set that describes the
insulin-glucose dynamics in Type 1 Diabetes (T1D). This setincludes a nominal LPV model and dynamic
uncertainty and is amenable to controller design. The nominal model is an LPV control-oriented model
previously published by the authors that is (in)validated in this work against the UVA/Padova metabolic
simulator. The result is a set of models that is used to designa switched LPV robust controller to account
for nonlinearities and variations in Insulin Sensitivity (SI ). Closed-loop responses obtained with the robust
controller and a nominal one are compared. Results illustrate the convenience of including robust strategies
in designing control laws for an Artificial Pancreas (AP).

Keywords: Artificial Pancreas, Control-Oriented Models, Model (In)Validation, Type 1 Diabetes Mellitus,
LPV Control.

1. Introduction

Type 1 Diabetes (T1D) is a disease characterized by the inability to produce insulin due to the destruc-
tion of the pancreaticβ-cells. Although Intensive Insulin Treatment (IIT) regimens have beneficial effects
on the risk of diabetes complications, they are extremely demanding for the patient and also associated
with an increased risk of hypoglycemia [1]. Therefore, an Artificial Pancreas (AP) system that automati-
cally modulates the patient’s insulin infusion rate appears as a better solution to maintain his/her glucose
concentration within safe limits. An AP system consists of aglucose sensor and an insulin pump both con-
nected by a control algorithm. Subcutaneous devices are usually selected, leading to a minimally invasive
AP scheme, but also, unfortunately, to a harder control problem due to the large lag times associated with
glucose measurement and insulin action. Moreover, designing AP controllers is inherently challenging, be-
cause the insulin-glucose system is characterized by nonlinear time-varying dynamics and significant inter-
and intrasubject variability [2].
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The AP development has been accelerated by the use of elaborated simulators, such as the UVA/Padova
metabolic simulator that was accepted by the US Food and DrugAdministration (FDA) in lieu of animal
trials [3–5], and has been extensively used for model identification and testing of AP controllers [6–16].
The main goal of T1D simulation models is to provide a blood glucose prediction as close as possible to a
real situation in order to performin-silico pre-clinical tests. However, this kind of models is not generally
used for controller synthesis, given its mathematical complexity. Therefore, they are usually simplified,
generating the so-calledcontrol-orientedmodels. Clearly, control-oriented models have to represent the
underlying dynamics, but with a simple mathematical formulation that facilitates the controller design.
In addition, it is worth remarking that using complex modelsfor synthesis does not necessarily guarantee
better closed-loop performance [17].

Several control-oriented models have been introduced in the past [6, 9, 11, 13, 18], and Linear
Parameter-Varying (LPV) models have been presented in previous works as a way to represent the time-
varying nature of the T1D problem [19, 20]. Recently, an LPV control-oriented model, developed by the
authors, has been sucessfully compared with other models using the Root Mean Square Error (RMSE) and
theν-gap metric [16]. In addition, interval models have been used to describe model uncertainty for anal-
ysis and simulation purposes [21–24]. Time-varying parameters have been included in intervals to reflect
how intra-patient variability propagates through the nonlinear dynamics in order to analyze the robustness
of the design. Nevertheless, no uncertainty quantificationhas been introduced for controller synthesis using
this technique.

The glucose-insulin system presents characteristics thatshould be tackled in a quantifiable way:
nonlinear/time-varying dynamics and uncertainty, both inter- and intra-patient. Fortunately, there is a frame-
work that deals with both problems, i.e.,robust controlaccounts for parametric and dynamic uncertainty,
andLPV controlrepresents most nonlinear dynamics, including this problem. In both methodologies, well-
known and numerically robust techniques can be applied to the analysis and synthesis stages. Within the
robust control framework, controller designs that includeuncertainty, although not explicitly, have usedH∞
optimal control that only consider time-invariant dynamics [25–27]. LPV techniques have also been applied
to modeling [28] and design [11, 29–31]. Moreover, robust Model Predictive Control (MPC) controllers
have been developed as well, using interval or physiology-based models [32, 33].

To obtain a model set in a robust control framework, uncertainty bounds should be computed after
comparing a nominal model with experimental data. A systematic way to do this is through (in)validation
techniques [34, 35]. There are no previous works in the field that have produced a model set or any uncer-
tainty bounds in this way, for this problem.

The results presented in this work will extend the validity of a particular LPV control-oriented model
to a set of models so as to represent uncertain dynamics. The model set will be obtained by means of
an invalidation procedure. Here, (in)validation is refered to a technique that compares the I/O data of an
experiment, with a given nominal model, under model uncertainty and noise bounds in order to determine
if model and data are consistent. In this paper, experimentsare obtained from the UVA/Padova metabolic
simulator and the nominal model is the LPV description presented in [16, 36]. Both noise and uncertainty
bounds are minimized so that the data could have been produced by the nominal model with uncertainty.
This procedure provides a quantification of the model error with respect to this simulator and produces
an LPV model setthat is amenable to design robust controllers that take intoaccount several sources of
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uncertainty, e.g., nonlinearities and variations in Insulin Sensitivity (SI).
Next section presents some background on control-orientedmodels and invalidation, and Section 3

describes the LPV invalidation results. Section 4 illustrates the use of the model set with the design of
a switched LPV controller that is tested on thein-silico adult cohort of the distribution version of the
UVA/Padova simulator. Conclusions and future research issues are presented in Section 5.

2. Background material

2.1. Control-oriented models

One interesting approach to obtain a personalized T1D control-oriented model is to adapt a low-order
model structure based ona priori patient information. For example, given the patient’s Total Daily Insulin
(TDI), an insulin sensitivity factor can be obtained using the 1800 rule (1800/TDI) [37]. From the medical
point of view, the 1800 rule indicates the maximum drop in glucose concentration, measured in mg/dl, after
a 1 U injection of rapid-acting insulin. Since the work in [6], that rule has been used in several studies,
both in-silico and clinical, to tune the gain of a Linear Time Invariant (LTI) model to a particular patient
[6, 9, 11].

A good control-oriented model should have a structure that allows a well-known, reliable and numeri-
cally robust control synthesis technique to produce a controller that can be implemented in real-time. This
control design method should be simple enough to allow real-time implementation, but at the same time it
should have sufficientdynamical richnessto overcome the obstacles of this particular problem: nonlinear-
ities, time delays, inter- and intra-patient variations, among others. Good candidates for an AP controller
design are LPV models or families of LPV (LTI) models, which can produce LPV or switched LPV (LTI)
controllers.

Examples of LPV models that have been proposed to describe the insulin-glucose dynamics can be
found in [19, 20, 38–41]. In [19] and [38], the Bergman minimal model [42] was considered and trans-
formed into a quasi-LPV model by an appropriate choice of parameters. In [39–41], the Sorensen compart-
mental model [43] was linearized at different points, whichwere defined as the vertexes of an affine-LPV
model that covers the original nonlinear one. This model wasused as an uncertainty LTI model set, and
anH∞ controller was designed to control it, hence, the time-varying characteristics were not exploited.
Finally, in [20], the Cambridge model [44] was represented with an LPV system by a particular selection
of scheduling variables. The LPV system was used to obtain a robust LPV controller that was tested on
different in-silico scenarios, showing the benefits of including uncertainty onthe controller synthesis.

The control-oriented LPV model used in this work was developed by two of the authors in [16, 36].
Model identification and tuning were performed using the distribution version of the UVA/Padova metabolic
simulator, around different basal operating points. Without going into greater detail, in [16, 36], a low-order
LTI model was proposed, similar to the one in [6], where the input corresponds to the subcutaneous insulin
infusion (in pmol/min) and the output is the glucose concentration deviation (in mg/dl):

G(s) = k
s+ z

(s+ p1)(s + p2)(s+ p3)
e−15s. (1)

Next, the nonlinear behavior of the insulin-glucose systemwas described through the construction of an
LPV average model (over all subjects) by making the parameter p1 vary with respect to the glucose value,
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keeping all the other parameters fixed (z = 0.1501, p2 = 0.0138 andp3 = 0.0143). Polep1(g) has been
approximated by a piecewise-polynomial function. The gainparameterk is time-invariant, but is adjusted
for each particular patient by means of his/her particular TDI. Given a subject#j, the LPV model is excited
with a 1 U insulin bolus and the value ofkj is determined so that the glucose drop matches the 1800 rule
(1800/TDI). Here, the bolus is applied at 235 mg/dl, which isthe operating point where the 1800 rule is on
average rendered correct for the nonlinear model [16, 36]. Therefore, an average LPV model is proposed
and is then personalized through the subject’s TDI, which iseasily obtainable from clinical data. Below, a
state-space representation of the personalized LPV model is presented:

ẋ(t) = A(p1)x(t) +Bu(t)

y(t) = Cx(t)
(2)

with u andy the insulin delivery and glucose signals, and

A(p1) =



0 1 0

0 0 1

0 −p2p3 −(p2 + p3)


+ p1




0 0 0

0 0 0

−p2p3 −(p2 + p3) −1


 ,

B =
[
0 0 1

]T
, C = kj

[
z 1 0

]
.

(3)

Note that model (2) is affine in the parameterp1(g), which depends on the glucose level. According to
the results presented in [16, 36], this LPV model has a betterfit with the simulator in terms of the RMSE
and theν-gap metric than others presented previously in this field. This fact indicates a potentially better
closed-loop performance when designing a controller basedon this model.

2.2. Model (in)validation

The idea behind model (in)validation1 is to verify if a given model is consistent with an experimental
data set(u(tk), y(tk), ρ(tk)) with k = 0, . . . , N − 1, whereu(tk), y(tk) andρ(tk) are the measures of
the input, output and varying parameter, respectively. In order to accommodate small differences between
the model output and the experimental information, the system is usually described by a set of models
parameterized by a nominal modelG(ρ), a (dynamic) uncertainty bound∆, and an output disturbanced.
For instance, the model set may be defined as illustrated in Figure 1, that is,

G = {G(ρ)(1 +Wδ(s)∆), ∆ ∈∆∆∆} (4)

where
∆∆∆ = {∆ ∈ H∞ : ||∆||∞ ≤ γ} , (5)

Wδ(s) is a stable transfer function specifying the uncertainty dependence on frequency,H∞ is the set of
stable transfer functions with suitable dimensions, and||∆||∞ = supω |∆(jω)|. On the other hand, the
disturbance is assumed in the set

D = {d ∈ Rr : ||d||2/N ≤ dmax} , (6)

1According to K. Popper [45], a theory can only befalsified or invalidatedwith certainty, never validated. This is because
future data (that might (in)validate the theory) are not accessible. This applies also to dynamical models which mimic physical
data.
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Figure 1: Model (in)validation setup.

with ||d||2 =
√∑N

0 d(tk)T d(tk). This framework is adequate for robust controller design methods, such
as:H∞ optimal control, LPV or switched (LTI) LPV control. The theory for model (in)validation has been
initially proposed in [34] and then extended to LPV systems in [46].

The relation among signals corresponding to the system description in Figure 1 can be expressed as:

Tz = TWδ
TGTu,

Ty = Tw + TGTu + Td,

Tw = T∆Tz,

(7)

whereTWδ
, TG andT∆ are the Toeplitz matrices associated with convolution kernels ofG(ρ), Wδ and∆,

respectively. The symbolsTz, Tu, Ty, Td andTw are the Toeplitz matrices associated to the sequencesu,
y, d, andw, respectively. The bold letters denote the respective truncated version of the signals as follows:
x = [xT0 . . . xTN−1] (see [34, 46] for more details).

The model set given byG is (in)validated against experimental data provided by vectorsu, y, andρρρ,
if there exist vectorsw andd satisfying constraints (4) and (6). This is defined as consistency, and for the
model, uncertainty and noise sets arenot invalidated by the existing data. The (in)validation of themodel in
Figure 1 can be expressed as a convex optimization problem. More concretely, the measures ofu(tk), y(tk)
andρ(tk) with k = 0, . . . , N − 1 are consistent with the model in Figure 1 if the following optimization
problem is feasible:

minimize
d,w

γ (8a)

subject to

[
T T
u (TWδ

TG)
TTWδ

TGTu T T
w (w)

Tw(w) γ2I

]
> 0, (8b)

[
d2max dT

d I

]
> 0 (8c)

whered = y −w − TGu.

3. LPV model invalidation of in-silico patients

In this section, the model (in)validation tools presented in Section 2.2 are used to test consistency of
the LPV model presented in Section 2.1 against theexperimentalnoiseless evidence obtained from the
UVA/Padova simulator. Thus, the output noise bound is set ata very small value and the optimization
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problem (8) is solved to determine the minimum uncertainty bound γ. The tools used for optimization
using the Linear Matrix Inequality (LMI) framework are SeDuMi [47] and Yalmip [48].

The experimental data sets[u(tk), y(tk), ρ(tk)] were generated by extensive simulations using two types
of realistic insulin profiles. The first one represents a correction insulin bolus of the form:

u(t) =

{
θ/Ts, if t0 ≤ t ≤ t0 + Ts,

0 otherwise,
(9)

whereTs = 5 minutes is the sampling time andθ a random number in the range[0.5, 1.5] U. The second
profile is a basal insulin modulation signal:

u(t) =

n∑

k=1

(1 + ζ)ubφ(kTp) (10)

whereub is the basal infusion rate,ζ is a random number in the range[−0.5, 0.5], φ(t) is a pulse signal of
widthTp = 60 minutes andnTp is the total simulation time. This signal mimics the modulation of the basal
insulin infusion rate during a closed-loop test, as the one that will illustrate these results in Section 4.

The difference between theexperimentand the model during the invalidation process covers dynamic
and/or parametric uncertainties. The first one involves thedifferent dynamical behaviors of the system when
moving from one glucose value to another. Specifically, thisrepresents different LTI models moving over
a nonlinear dynamical surface. In addition, an important type of parameter variation that has relevance
in this problem is the uncertainty inSI, which is related to the well-known intra-patient variations. In
order to consider this variability, seven versions of eachin-silico adult of the distribution version of the
UVA/Padova simulator were generated by affecting the nominal insulin sensitivity (SI,nom) with factor
values in the set{0.5, 0.7, 0.9, 1, 1.1, 1.3, 1.5}. These values were selected according to results
presented in [49]. Variations inSI were implemented as changes in the model parametersVmx andkp3 that
represent the peripheral and hepatic insulin sensitivity,respectively (see [5] for a complete description of
model equations).

To collect sufficient representative information of eachin-silico adult, they were excited with three
signals of the form (9) and five of the form (10). As an example,Figure 2 shows the excitation signals
and glucose evolution corresponding to the experiments performed on Adult #001 with sensitivitySI,nom.
The upper plots correspond to the input signals and the bottom plots correspond to the glucose responses
obtained with the UVA/Padova simulator and the LPV model. Bearing in mind that different insulin sensitiv-
ities are used, effects of insulin modulations in a wider range are considered, at least in nominal conditions.
For example, a 1.5 U bolus forSI= 1.5 SI,nom would be similar to a lower bolus with the nominalSI, or a
larger bolus with a lowerSI. Moreover, the range of insulin profiles used in this work waslimited in order
to guarantee that the glucose traces, in all cases, remain inthe simulator’s domain of validity, i.e., [40, 400]
mg/dl.

The model (in)validation discussed above requires a discrete model. Therefore, the LPV model pro-
posed in Section 2.1 was transformed into:

x(tk+1) = Ad[p1(tk)] x(tk) +Bd u(tk),

y(tk) = Cd x(tk),

6
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Figure 2: In-silico experimental results with the insulin bolus test signal (left) and the basal insulin modulation test signal (right)
applied to Adult #001 with sensitivitySI,nom. Insulin infusion rate (upper) and glucose response (lower) obtained with UVA/Padova
simulator (solid line) with LPV model (dashed line).

where

Ad[p1(tk)] =

[
I + TsA[p1(tk)] 0

BeC Ae

]
, Bd =

[
TsBe

0

]
, Cd =

[
0 Ce

]
,

Ae =



0 0 0

1 0 0

0 1 0


 , Be =



1

0

0


 , Ce =

[
0 0 1

]
.

The noise signal set was defined in (6) withdmax = 0.05, and the uncertainty weight in (4) as:

Wδ(s) = 0.2
500s + 1

50s + 1
(11)

In model (in)validation, the differences between the experimental data and the model are “explained” by the
model uncertainty∆ and a noise set bounded bydmax mg/dl. Here, noise-free results from the UVA/Padova
simulator have been used as “experimental data”. This is thereason for choosing such a small noise bound
dmax. In addition the noise set serves to consider noisy data, butthis bound has no implications in the
control design. In next section more realistic noisy scenarios are considered to test the proposed robust
controller, which does not affect the validity of the uncertain model.

Hence, all differences between the model and the experimentare attributed to non-linearities and un-
modeled phenomena, which can affect stability and performance. HereWδ(s) is a high-pass filter because
above a certain frequency, uncertainty impedes the stabilization of the closed-loop. The only designer’s
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Figure 3: Summary of the uncertainty boundsγ obtained for the eight test signals applied to eachin-silico adult with seven different
SI. The blue line indicates the worst-case uncertainty boundγws

choice is the maximum achievable closed-loop bandwidth (2× 10−3 rad/min in eqn. (11)) which was cho-
sen according to thea priori knowledge on the system, in order to cover the nominal model’s dynamics. Its
magnitude depends on theexperimentalknowledge of the system, and is computed as an uncertainty bound
γ in the set (5) which scalesWδ(s) during the controller design. The magnitude depends on the proposed
uncertain model, and in general can be reduced if a more complex model set is used, e.g., higher order.
Therefore, the20% uncertainty thatWδ(s) has at low frequencies is only a starting point, since the actual
magnitude is computed by means of the (in)validation procedure.

The uncertainty boundsγ obtained after solving the optimization problem (8) for each data set and
for eachin-silico adult are summarized in Figure 3. Adult #007 has been excluded because its TDI is not
compatible with itsSI. In addition, the invalidation tests performed on this subject have shown a clear
inconsistency between model and data, turning it into an outlier of the set in terms of model uncertainty.
The red dots indicate theγ for each test and the red line the worst case bound for each combination of
subject-SI. The blue line indicates the worst-case uncertainty boundγws for each adult. This last bound
can be used in LPV synthesis tools for the controller design by scaling the uncertainty weight asγwsWδ(s).
The corresponding values obtained in the model (in)validation are listed in Table 1.

4. Switched-LPV robust controller design

The use of the set of models obtained previously is illustrated in this section designing a switched-
LPV controller. To this end, each subject is represented by the set of models computed in Section 3, and
extending the ideas in [11, 16], a (robust) switched LPV controller is synthesized based on this set. This
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Adult

SI/SI,nom #001 #002 #003 #004 #005 #006 #008 #009 #010 #011

0.5 1.524 1.735 1.555 1.560 1.484 1.754 1.596 1.598 1.808 1.637
0.7 1.093 1.515 1.194 1.190 1.185 1.530 1.326 1.124 1.502 1.298
0.9 0.791 1.350 1.015 0.934 0.858 1.332 1.318 0.949 1.344 1.282
1.0 0.698 1.479 0.958 0.787 0.696 1.256 1.238 0.822 1.301 1.208
1.1 0.681 2.131 0.948 0.646 0.540 1.196 1.147 0.700 1.218 1.128
1.3 1.566 3.859 1.801 0.552 0.523 1.135 0.989 0.526 1.276 1.431
1.5 3.327 5.694 3.510 0.798 0.791 1.528 0.940 1.197 1.231 2.864

γws 3.327 5.694 3.510 1.560 1.484 1.754 1.596 1.598 1.808 2.864

Table 1: Uncertainty bounds for eachin-silico adult and each variation inSI. The worst-case bounds areγws.

design switches between two LPV controllers:K1(ρ) that is conservative and performs slight changes on
the basal insulin infusion rate, andK2(ρ) that is more aggressive and is triggered at meal times.

The design of LPV controllers follows similar procedures asH∞ optimal control, but for time-varying
systems. The controller is computed solving a convex optimization problem aimed at minimizing theL2

gain of the mapping from a generic disturbancew to an outputz, i.e., minimizing a scalarη > 0 such that

‖z‖2 < η ‖w‖2,

where‖x‖2 =
√∫∞

0 xT (t)x(t) dt. Therefore, the design involves selectingw and z according to the
control specifications. In the case of the AP, the structure of weights and signals are illustrated in Figure 4.
In this framework, a controller designed to cope with an uncertain system represented by a set of models,
works properly when nominal performance and robust stability are satisfied.

Here, nominal performance pertains the minimization of twoselected variables under asetof possible
perturbationsr. Thus, it is achieved by solving the minimization of a gainα > 0 for all r bounded inL2

such that: ∥∥∥∥∥

[
ẽ

ũ

]∥∥∥∥∥
2

< α‖r‖2, (12)

−
r

K(ρ)
e

G(ρ)
u

ρ

yδ

Wδ

ỹ

Wp

ẽ

Wu

ũ

z

w

Figure 4: Robust LPV control design setup.
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Adult #001 #002 #003 #004 #005 #006 #008 #009 #010 #011

γws 3.327 5.694 3.510 1.560 1.484 1.754 1.596 1.598 1.808 2.864
ke 0.023 0.016 0.023 0.045 0.050 0.043 0.047 0.046 0.041 0.027

η1 1.081 1.042 1.122 1.281 1.388 1.474 1.423 1.301 1.311 1.129
β1 0.949 0.982 0.965 0.861 0.849 0.812 0.835 0.887 0.878 0.961
η2 1.014 1.012 1.039 1.078 1.130 1.142 1.138 1.101 1.100 1.045
β2 0.982 0.988 1.005 0.975 0.993 0.999 0.999 0.997 1.001 1.005

Table 2: Results corresponding to the LPV robust controllerdesign for eachin silico adult.

whereẽ and ũ are obtained after weighting the glucose errore and the control actionu (insulin infusion)
with the following weights:

Wp(s) =
ke
10

10s+ 1

5000s + 1
, (13)

Wu = ku,j , (14)

respectively. The variablej ∈ {1, 2} corresponds to the controller index in the switching strategy. Weight
Wp(s) penalizes glucose deviations from the basal value (around120 mg/dl [5]) and weightWu penalizes
large changes in the insulin injection. Both weights are theonly controller tunning parameters, and are
selected according to the designer’s priorities. In this work, these performance weights have been selected
in order to prioritize avoidance of hypoglycemia rather than the lack of hyperglycemia, considering the
short and long term consequences of each state.

Robust stability consists in guaranteeing that the controller stabilizes the closed-loop system for any
possible model in the set (4), and therefore stabilizes the underlying uncertain dynamics. To this end, the
controller must be computed in order to ensureβ < 1 where

‖ỹ‖2 < β ‖yδ‖2.

Variableỹ is obtained after weightingy with the uncertainty dynamics (11) affected by the worst-case bound
γws corresponding to the particular subject, i.e.,γwsWδ(s).

Table 2 summarizes the controller design results. For all subjects, the parameter inWu was set as
ku,1 = 0.5 andku,2 = 0.07. Note thatku,2 is significantly smaller thanku,1, and therefore provides a lower
weight on the control variable which in turn produces a more aggressive controller (higher insulin infusion
at meal times). Parameterke was adjusted for each patient in order to ensure the robust stability condition
β < 1. Notice that by norm propertiesβ ≤ η, nevertheless forcingη < 1 might result in a very conservative
controller design. For this reason, the parameterke for each patient was selected according to the gainβ.
From Table 2 it is clear that those subjects with higher uncertainty boundγws require lower values ofke,
which implies a lower performance, i.e., a worst glucose regulation.

Closed-loop simulations were performed considering the following conditions: (i) the UVA/Padova
distribution simulator; (ii) a meal of70 g of CHO is ingested at hour7; (iii) the aggressive controller
is triggered exactly at meal time and commands the insulin infusion; (iv) one hour after meal time, the
conservative controller automatically takes over the insulin delivery; and (v) a CGM sensor and an insulin
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Figure 5: Closed-loop responses for onein-silico adult to a meal of 70 g of CHO at the hour7, using the nominal controller
(left) and the robust controller (right). Seven variationsof SI are considered and the same CGM noise is applied in all cases for
comparison purposes. The continuous red lines represent the limits of the 70-250 mg/dl range, the dashed blue lines indicate the
limits of the 70-180 mg/dl range, and the dashed black lines indicate the minimum and maximum glucose values.

pump with a delivery resolution of 0.1 U. It is worth clarifying that meal announcement is made only for
triggering the aggressive controller, but no information regarding the carbohydrate amount is required by
the controller, and therefore, no pre-meal insulin bolusesare infused.

Figure 5 presents simulations of the closed-loop system forone in-silico adult, where each line corre-
sponds to a particular subject’sSI indicated in Section 3. Plots on the right correspond to the closed-loop
system with the robust controller designed as mentioned in this section. Plots on the left show the closed-
loop responses with a nominal controller, i.e., a controller designed considering only the performance ob-
jective (12) and not the model set (4) (model uncertainty is excluded) with the sameku,j andke = 1.
Comparing both responses, it can be observed that the nominal controller is more aggressive than the robust
one, applying higher insulin doses. This result is suitablefor SI values close toSI,nom, but not when theSI
is far from the nominal value. This is clear in the case of a more sensitive value asSI= 1.5SI,nom in which
a significant postprandial glucose drop can be observed (minimum blood glucose around 40 mg/dl). On
the other hand, the robust controller is more conservative,using lower insulin values, but produces a more
uniform response for allSI cases (minimum blood glucose around 90 mg/dl). These results are reasonable
from the point of view of robust control theory: a controllerthat aims for a particular (nominal) model
representation of the patient will show its worst performance when the model does not match the actual
patient. Instead, a robust controller that should manage a set of models (a more realistic representation of
the patient) already considers possible uncertainties in both model dynamics and parameters, and therefore
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Figure 6: Left: CVGA plots of the closed-loop responses of all in-silico adults and theirSI variations for the nominal (white) and
the robust controllers (blue). Right: Time-in-range plots.

will perform at its best in general, although in a more conservative fashion.
Figure 6 provides the closed-loop results for allin-silico adults in a CVGA (left) and time-in-range

(right) plots. Time-in-range results are computed from themeal time to the end of the simulation. A
comparison is made between the nominal and robust controller designs over all subjects, including their
SI variations. From the CVGA plot, the nominal controller presents a higher number of subjects in the
lower D-zone (nominal: 29%, robust: 1%), indicating risk ofhypoglycemia. Instead, the robust controller
is located in the B- and upper B-zones, achieving a significant reduction in hypoglycemic events, compared
to the nominal one. This situation is also shown in the time-in-range plot, where a significant reduction of
time in hypoglycemia (< 70 mg/dl) is achieved (nominal: 2.67% vs. robust: 0.05%,p < 0.05), without
significantly reducing the percentage of time in range [70, 250] mg/dl (nominal: 96.85% vs. robust: 95.48%,
p = 0.108). Although there is a significant reduction in percentage oftime in range [70, 180] mg/dl when
the robust controller is used (nominal: 88.75% vs. robust: 82.19%,p < 0.05), time in range achieved with
the robust controller is still acceptable. Hyperglycemic behavior arises as a consequence of the conservative
tendency of the robust controller, coming from a large uncertainty bound, and therefore, it can be reduced
by further refining of the uncertainty bounds by means of more(and better) information of each patient.

5. Conclusions and Future research

In this work, an LPV invalidation technique has been appliedto a control-oriented LPV model in order to
expand the insulin-glucose description to a set of LPV models. This set is instrumental for robust controller
design, which in this work has been carried out by a switched LPV procedure. The controller design based
on this model set has proved useful when dynamic and parametric uncertainties appear in the problem.
An illustrative example presents a robust controller that copes with uncertainties in the nonlinear dynamics
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(changes in the glucose values) and variations inSI, as compared to a nominal design.
In terms of future work, an important issue to be solved next is how to apply this modeling strategy

from real clinical data in a minimally invasive way. There are several alternatives, but the one that will be
explored is the use of the patient’s daily data recorded by the CGM and pump to invalidate the LPV model
and obtain the patient’s particular model set. In this way a robust controller can be designed, and tested
clinically on the same subject. Using clinical data, which could have lower excitability, will not affect the
procedure, since the difference between the clinical data and the model output comes from the patient and
the model set obtained (which now represents this patient) is the one to be controlled.

Additionally, there are different approaches to account for parameter variations in the controller design
stage. One is to cover them with dynamic uncertainty, as has been presented here, selecting a single uncer-
tainty bound for each patient. Another is to select an LPV uncertainty weight for the design that accounts
for its variation with the subject’sSI. In the latter approach, a real-time estimation ofSI like the one de-
veloped in [50] from CGM and insulin pump data could be used. Athird approach would be to formalize
intra-patient variations in an LPV model that includes thisvariation in a way that allows for the real-time
estimation of patientsSI daily variability. The last two approaches could increase the performance of the
resulting controller.
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