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Abstract

The purpose of this work is to compute a Linear Parameteyiv@r(LPV) model set that describes the
insulin-glucose dynamics in Type 1 Diabetes (T1D). Thisiseludes a nominal LPV model and dynamic
uncertainty and is amenable to controller design. The nahmtodel is an LPV control-oriented model
previously published by the authors that is (in)validatedhis work against the UVA/Padova metabolic
simulator. The result is a set of models that is used to desigmitched LPV robust controller to account
for nonlinearities and variations in Insulin Sensitivity;§. Closed-loop responses obtained with the robust
controller and a nominal one are compared. Results illtgsthee convenience of including robust strategies
in designing control laws for an Artificial Pancreas (AP).

Keywords: Artificial Pancreas, Control-Oriented Models, Model (Ia)idation, Type 1 Diabetes Mellitus,
LPV Control.

1. Introduction

Type 1 Diabetes (T1D) is a disease characterized by thelityatoi produce insulin due to the destruc-
tion of the pancreatig-cells. Although Intensive Insulin Treatment (1IT) regingehave beneficial effects
on the risk of diabetes complications, they are extremelyateling for the patient and also associated
with an increased risk of hypoglycemia [1]. Therefore, atifisial Pancreas (AP) system that automati-
cally modulates the patient’s insulin infusion rate appess a better solution to maintain his/her glucose
concentration within safe limits. An AP system consists gfiecose sensor and an insulin pump both con-
nected by a control algorithm. Subcutaneous devices arlyselected, leading to a minimally invasive
AP scheme, but also, unfortunately, to a harder controllpmlzlue to the large lag times associated with
glucose measurement and insulin action. Moreover, dexighP controllers is inherently challenging, be-
cause the insulin-glucose system is characterized bymeanltime-varying dynamics and significant inter-
and intrasubject variability [2].
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The AP development has been accelerated by the use of dledbsrenulators, such as the UVA/Padova
metabolic simulator that was accepted by the US Food and Bdmginistration (FDA) in lieu of animal
trials [3-5], and has been extensively used for model ifleation and testing of AP controllers [6—16].
The main goal of T1D simulation models is to provide a bloagtgke prediction as close as possible to a
real situation in order to perforim-silico pre-clinical tests. However, this kind of models is not gefig
used for controller synthesis, given its mathematical dewrity. Therefore, they are usually simplified,
generating the so-callecbntrol-orientedmodels. Clearly, control-oriented models have to repreten
underlying dynamics, but with a simple mathematical formtioh that facilitates the controller design.
In addition, it is worth remarking that using complex modiels synthesis does not necessarily guarantee
better closed-loop performance [17].

Several control-oriented models have been introduced énpist [6, 9, 11, 13, 18], and Linear
Parameter-Varying (LPV) models have been presented inqueworks as a way to represent the time-
varying nature of the T1D problem [19, 20]. Recently, an LRWtcol-oriented model, developed by the
authors, has been sucessfully compared with other modelg e Root Mean Square Error (RMSE) and
thev-gap metric [16]. In addition, interval models have beendusedescribe model uncertainty for anal-
ysis and simulation purposes [21-24]. Time-varying patansehave been included in intervals to reflect
how intra-patient variability propagates through the nwdr dynamics in order to analyze the robustness
of the design. Nevertheless, no uncertainty quantificdtembeen introduced for controller synthesis using
this technique.

The glucose-insulin system presents characteristics gshatild be tackled in a quantifiable way:
nonlinear/time-varying dynamics and uncertainty, botarinand intra-patient. Fortunately, there is a frame-
work that deals with both problems, i.eobust controlaccounts for parametric and dynamic uncertainty,
andLPV controlrepresents most nonlinear dynamics, including this prable both methodologies, well-
known and numerically robust techniques can be appliedeattalysis and synthesis stages. Within the
robust control framework, controller designs that includeertainty, although not explicitly, have uskd,
optimal control that only consider time-invariant dynaajg5—27]. LPV technigues have also been applied
to modeling [28] and design [11, 29-31]. Moreover, robustdelaPredictive Control (MPC) controllers
have been developed as well, using interval or physiolaggetd models [32, 33].

To obtain a model set in a robust control framework, uncetyabounds should be computed after
comparing a nominal model with experimental data. A systenveay to do this is through (in)validation
techniques [34, 35]. There are no previous works in the fleddl have produced a model set or any uncer-
tainty bounds in this way, for this problem.

The results presented in this work will extend the validifyagarticular LPV control-oriented model
to a set of models so as to represent uncertain dynamics. Ddelrset will be obtained by means of
an invalidation procedure. Here, (in)validation is retete a technique that compares the 1/0O data of an
experimentwith a given nominal model, under model uncertainty andg@&diounds in order to determine
if model and data are consistent. In this paper, experimemat®btained from the UVA/Padova metabolic
simulator and the nominal model is the LPV description pnesekin [16, 36]. Both noise and uncertainty
bounds are minimized so that the data could have been prddycthe nominal model with uncertainty.
This procedure provides a quantification of the model errith wespect to this simulator and produces
an LPV model sethat is amenable to design robust controllers that takeantmunt several sources of



uncertainty, e.g., nonlinearities and variations in Ims@ensitivity ).

Next section presents some background on control-oriemedels and invalidation, and Section 3
describes the LPV invalidation results. Section 4 illustsathe use of the model set with the design of
a switched LPV controller that is tested on timesilico adult cohort of the distribution version of the
UVA/Padova simulator. Conclusions and future researakeisare presented in Section 5.

2. Background material

2.1. Control-oriented models

One interesting approach to obtain a personalized T1D a@eotiented model is to adapt a low-order
model structure based @npriori patient information. For example, given the patient’s Totaily Insulin
(TDI), an insulin sensitivity factor can be obtained usihg 1800 rule (1800/TDI) [37]. From the medical
point of view, the 1800 rule indicates the maximum drop ircgke concentration, measured in mg/dl, after
a 1 U injection of rapid-acting insulin. Since the work in [@fat rule has been used in several studies,
bothin-silico and clinical, to tune the gain of a Linear Time Invariant (Llodel to a particular patient
[6, 9, 11].

A good control-oriented model should have a structure thatva a well-known, reliable and numeri-
cally robust control synthesis technique to produce a otlatrthat can be implemented in real-time. This
control design method should be simple enough to allowtigad-implementation, but at the same time it
should have sufficierdynamical richnes$o overcome the obstacles of this particular problem: mesali-
ities, time delays, inter- and intra-patient variationsioag others. Good candidates for an AP controller
design are LPV models or families of LPV (LTI) models, whicdmgroduce LPV or switched LPV (LTI)
controllers.

Examples of LPV models that have been proposed to describeslulin-glucose dynamics can be
found in [19, 20, 38—41]. In [19] and [38], the Bergman minimadel [42] was considered and trans-
formed into a quasi-LPV model by an appropriate choice oapaaters. In [39-41], the Sorensen compart-
mental model [43] was linearized at different points, whieére defined as the vertexes of an affine-LPV
model that covers the original nonlinear one. This model usesl as an uncertainty LTI model set, and
an H., controller was designed to control it, hence, the time-vayycharacteristics were not exploited.
Finally, in [20], the Cambridge model [44] was representethan LPV system by a particular selection
of scheduling variables. The LPV system was used to obtaobast LPV controller that was tested on
differentin-silico scenarios, showing the benefits of including uncertaintyhercontroller synthesis.

The control-oriented LPV model used in this work was devetbpy two of the authors in [16, 36].
Model identification and tuning were performed using théritistion version of the UVA/Padova metabolic
simulator, around different basal operating points. Wittgoing into greater detail, in [16, 36], a low-order
LTI model was proposed, similar to the one in [6], where thmutrcorresponds to the subcutaneous insulin
infusion (in pmol/min) and the output is the glucose conitn deviation (in mg/dl):

s+z
G(s)=k e 15, 1
O = oG+ G+ ) @
Next, the nonlinear behavior of the insulin-glucose systeas described through the construction of an

LPV average model (over all subjects) by making the paramegtgary with respect to the glucose value,
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keeping all the other parameters fixed=€ 0.1501, po = 0.0138 andps = 0.0143). Polep;(g) has been
approximated by a piecewise-polynomial function. The gairametelk is time-invariant, but is adjusted

for each particular patient by means of his/her particulat. Given a subjec#j, the LPV model is excited
with a 1 U insulin bolus and the value &f is determined so that the glucose drop matches the 1800 rule
(1800/TDI). Here, the bolus is applied at 235 mg/dl, whicthis operating point where the 1800 rule is on
average rendered correct for the nonlinear model [16, 3Bgr@fore, an average LPV model is proposed
and is then personalized through the subject’s TDI, whickassly obtainable from clinical data. Below, a
state-space representation of the personalized LPV megetsented:

#(t) = A(p1)ar(t) + Bu(t)

)
y(t) = Cu(t)
with « andy the insulin delivery and glucose signals, and
0 1 0 0 0 0
Alp)= 10 0 1 +p1| 0 0 01,
0 —paps —(p2 +p3) —p2ps —(p2+p3) -1 3)

B=[0 0 1}T, C=kilz 1 0|

Note that model (2) is affine in the parametgfg), which depends on the glucose level. According to
the results presented in [16, 36], this LPV model has a béttetith the simulator in terms of the RMSE
and ther-gap metric than others presented previously in this fiekis Tact indicates a potentially better
closed-loop performance when designing a controller basdtlis model.

2.2. Model (in)validation

The idea behind model (in)validatibris to verify if a given model is consistent with an experinant
data set(u(tx), y(tr), p(tx)) with & = 0,..., N — 1, whereu(tx), y(tx) and p(t;) are the measures of
the input, output and varying parameter, respectively.réfento accommodate small differences between
the model output and the experimental information, theesysis usually described by a set of models
parameterized by a nominal modg(p), a (dynamic) uncertainty bountl, and an output disturbancé
For instance, the model set may be defined as illustratecgur&il, that is,

G ={G(p)(1 + Ws(s)A), A € A} 4)

where
A={A et : [|Allc <7}, (5)

Ws(s) is a stable transfer function specifying the uncertaintyesielence on frequency . is the set of
stable transfer functions with suitable dimensions, aid|., = sup,, |A(jw)|. On the other hand, the
disturbance is assumed in the set

D={deR" : [|d||2/N < dmax}, (6)

*According to K. Popper [45], a theory can only tasified or invalidatedwith certainty, never validated. This is because
future data (that might (in)validate the theory) are noteastble. This applies also to dynamical models which mirhigsgeal
data.

4



¥
B>

=
=l Glp)

Figure 1: Model (in)validation setup.

with ||d||2 = \/ZéV d(t;)Td(t). This framework is adequate for robust controller desigthwogs, such
as: H . optimal control, LPV or switched (LTI) LPV control. The thgofor model (in)validation has been
initially proposed in [34] and then extended to LPV systempib].

The relation among signals corresponding to the systenrigéso in Figure 1 can be expressed as:

Tz = TWgTGTu>
Ty =Ty +TcT, + Tq, (7)
Tw = TATz>

whereTyy,, T; andTa are the Toeplitz matrices associated with convolution &srofG(p), Ws and A,
respectively. The symbols,, T, T, Ty andT,, are the Toeplitz matrices associated to the sequemces
y, d, andw, respectively. The bold letters denote the respectivectitau version of the signals as follows:
x = [zl ... 2% ] (see [34, 46] for more details).

The model set given by is (in)validated against experimental data provided bytarsas, y, andp,
if there exist vectorsv andd satisfying constraints (4) and (6). This is defined as cossty, and for the
model, uncertainty and noise sets aotinvalidated by the existing data. The (in)validation of thedel in
Figure 1 can be expressed as a convex optimization problesre bbncretely, the measuresudty. ), y(tx)
andp(t;) with £ = 0,..., N — 1 are consistent with the model in Figure 1 if the following ioprzation
problem is feasible:

minimize 7y (8a)
dw
, T (Tw,Te) Tw,TcT, TE(w)
subject to (STw(w) o ey > 0, (8b)
d? da’
max 0 8C
1 I ] > (8¢)

whered =y — w — Tgu.

3. LPV model invalidation of in-silico patients

In this section, the model (in)validation tools presentedection 2.2 are used to test consistency of
the LPV model presented in Section 2.1 againstdkperimentalnoiseless evidence obtained from the
UVA/Padova simulator. Thus, the output noise bound is set atry small value and the optimization
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problem (8) is solved to determine the minimum uncertairdyriz v. The tools used for optimization
using the Linear Matrix Inequality (LMI) framework are Selldif47] and Yalmip [48].

The experimental data setgt; ), y(tx), p(t;)] were generated by extensive simulations using two types
of realistic insulin profiles. The first one represents aextion insulin bolus of the form:

u(t) = 0/T,, iftg<t<to+Ts,
1o otherwise

(9)

whereTs = 5 minutes is the sampling time armida random number in the rang@5, 1.5] U. The second
profile is a basal insulin modulation signal:
n
u(t) =Y (1+ Quud(KT) (10)
k=1

whereuy, is the basal infusion raté,is a random number in the ran@e0.5, 0.5], ¢(¢) is a pulse signal of
width 7}, = 60 minutes anch7), is the total simulation time. This signal mimics the modilatof the basal
insulin infusion rate during a closed-loop test, as the da¢will illustrate these results in Section 4.

The difference between thexperimentnd the model during the invalidation process covers dyaami
and/or parametric uncertainties. The first one involveglifierent dynamical behaviors of the system when
moving from one glucose value to another. Specifically, tpgesents different LTI models moving over
a nonlinear dynamical surface. In addition, an importapetpf parameter variation that has relevance
in this problem is the uncertainty ifi;, which is related to the well-known intra-patient variaio In
order to consider this variability, seven versions of egrchilico adult of the distribution version of the
UVA/Padova simulator were generated by affecting the naimimsulin sensitivity §; ,om) With factor
values in the sef0.5, 0.7, 0.9, 1, 1.1, 1.3, 1.5}. These values were selected according to results
presented in [49]. Variations iy were implemented as changes in the model paramelgrsandk,; that
represent the peripheral and hepatic insulin sensitivitypectively (see [5] for a complete description of
model equations).

To collect sufficient representative information of eaofsilico adult, they were excited with three
signals of the form (9) and five of the form (10). As an exampligure 2 shows the excitation signals
and glucose evolution corresponding to the experiment®imeed on Adult #001 with sensitivit$y ,om.
The upper plots correspond to the input signals and the ingbiots correspond to the glucose responses
obtained with the UVA/Padova simulator and the LPV modekiey in mind that different insulin sensitiv-
ities are used, effects of insulin modulations in a widegeaare considered, at least in nominal conditions.
For example, a 1.5 U bolus f&i= 1.5 Sy ,om Would be similar to a lower bolus with the nomirt&l, or a
larger bolus with a lowes;. Moreover, the range of insulin profiles used in this work Viméted in order
to guarantee that the glucose traces, in all cases, remtie simulator’s domain of validity, i.e., [40, 400]
mg/dl.

The model (in)validation discussed above requires a diseredel. Therefore, the LPV model pro-
posed in Section 2.1 was transformed into:

z(tkt1) = Aalp1(te)] (k) + Ba u(ty),
y(tr) = Cq z(tr),

6
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Figure 2:In-silico experimental results with the insulin bolus test signdt)l@nd the basal insulin modulation test signal (right)
applied to Adult #001 with sensitivity1 nom. INsulin infusion rate (upper) and glucose response (Ipaained with UVA/Padova

simulator (solid line) with LPV model (dashed line).

where
[T+ T Alpy (¢ 0 T, B,
Ad[pl(tk)] B[Cpl( k)] ) Bd— 0 , Cd: [0 Cei|a
(0 0 0 1
A, =1 0 of, B.= |0], Ce:[ooq.
0 10 0

The noise signal set was defined in (6) with., = 0.05, and the uncertainty weight in (4) as:

500s +1

—0.2
Wils) =02 =57

(11)
In model (in)validation, the differences between the expental data and the model are “explained” by the
model uncertaintyA and a noise set bounded &y, mg/dl. Here, noise-free results from the UVA/Padova
simulator have been used as “experimental data”. This issagon for choosing such a small noise bound
dmax- 1N addition the noise set serves to consider noisy datathimitboound has no implications in the
control design. In next section more realistic noisy scesaare considered to test the proposed robust
controller, which does not affect the validity of the uneartmodel.

Hence, all differences between the model and the experiarenattributed to non-linearities and un-
modeled phenomena, which can affect stability and perfoomaHereVs(s) is a high-pass filter because
above a certain frequency, uncertainty impedes the statidn of the closed-loop. The only designer’s
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Figure 3: Summary of the uncertainty boundsbtained for the eight test signals applied to aesilico adult with seven different
S1. The blue line indicates the worst-case uncertainty bound

choice is the maximum achievable closed-loop bandwigitk {0~3 rad/min in egn. (11)) which was cho-
sen according to tha priori knowledge on the system, in order to cover the nominal medigthamics. Its
magnitude depends on tegperimentaknowledge of the system, and is computed as an uncertaintydbo
~ in the set (5) which scaleid’s(s) during the controller design. The magnitude depends onrihgoged
uncertain model, and in general can be reduced if a more exmpbdel set is used, e.g., higher order.
Therefore, the0% uncertainty thatVs(s) has at low frequencies is only a starting point, since theact
magnitude is computed by means of the (in)validation proced

The uncertainty bounds obtained after solving the optimization problem (8) for leaata set and
for eachin-silico adult are summarized in Figure 3. Adult #007 has been exdlbéeause its TDI is not
compatible with itsS;. In addition, the invalidation tests performed on this sgbjhave shown a clear
inconsistency between model and data, turning it into aheowdf the set in terms of model uncertainty.
The red dots indicate the for each test and the red line the worst case bound for eachination of
subjectS;. The blue line indicates the worst-case uncertainty boypdfor each adult. This last bound
can be used in LPV synthesis tools for the controller desigsclaling the uncertainty weight ag,Ws(s).
The corresponding values obtained in the model (in)vabdadre listed in Table 1.

4. Switched-LPV robust controller design

The use of the set of models obtained previously is illusttah this section designing a switched-
LPV controller. To this end, each subject is representechbyset of models computed in Section 3, and
extending the ideas in [11, 16], a (robust) switched LPV wuier is synthesized based on this set. This

8



Adult
St/Stnom #001  #002 #003 #004 #005 #006 #008 #009 #010 #011

0.5 1524 1735 1555 1560 1.484 1.754 1.596 1598 1.808371.6
0.7 1.093 1515 1.194 1.190 1.185 1.530 1.326 1.124 1.502981.2
0.9 0.791 1.350 1.015 0.934 0.858 1.332 1.318 0.949 1.344821.2
1.0 0.698 1479 0.958 0.787 0.696 1.256 1.238 0.822 1.301081.2
11 0.681 2.131 0.948 0.646 0.540 1.196 1.147 0.700 1.218281.1
13 1566 3.859 1.801 0.552 0.523 1.135 0.989 0.526 1.276311.4
15 3.327 5.694 3.510 0.798 0.791 1.528 0.940 1.197 1.231642.8
Yws 3.327 5.694 3510 1.560 1484 1754 1596 1598 1.808 2.864

Table 1: Uncertainty bounds for eathsilico adult and each variation . The worst-case bounds ayg.

design switches between two LPV controllefs; (p) that is conservative and performs slight changes on
the basal insulin infusion rate, ardth(p) that is more aggressive and is triggered at meal times.

The design of LPV controllers follows similar procedurestas optimal control, but for time-varying
systems. The controller is computed solving a convex ogttion problem aimed at minimizing the,
gain of the mapping from a generic disturbancéo an outputz, i.e., minimizing a scalan > 0 such that

12ll2 < 7 flwll2,

where ||z||2 = \/fooo 2T (t)x(t) dt. Therefore, the design involves selectingand z according to the
control specifications. In the case of the AP, the struct@imgeights and signals are illustrated in Figure 4.
In this framework, a controller designed to cope with an utade system represented by a set of models,
works properly when nominal performance and robust stgllie satisfied.

Here, nominal performance pertains the minimization of setected variables undersatof possible
perturbations . Thus, it is achieved by solving the minimization of a gain> 0 for all » bounded in’,
such that:

€
H - < a|r|lz, (12)
U
2
(]
> W5 ——
é
> W, >}z
o
> W, ——>
T e U
—> K(p) > G(p) >
- P A
w A |

Ys

Figure 4: Robust LPV control design setup.
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Adult #001 #002 #003 #004 #005 #006 #008 #009 #010 #011

Tws 3.327 5.694 3.510 1560 1.484 1.754 1596 1.598 1.808 2.864
ke 0.023 0.016 0.023 0.045 0.050 0.043 0.047 0.046 0.041 0.027

m 1.081 1.042 1.122 1.281 1388 1474 1423 1301 1311 1.129
51 0.949 0.982 0965 0.861 0.849 0.812 0.835 0.887 0.878 0.961
72 1.014 1.012 1.039 1.078 1.130 1.142 1.138 1.101 1.100 1.045
B2 0.982 0.988 1.005 0.975 0.993 0.999 0.999 0.997 1.001 1.005

Table 2: Results corresponding to the LPV robust contralésign for eacln silico adult.

whereé andw are obtained after weighting the glucose erw@nd the control actiom (insulin infusion)
with the following weights:

ke 10s+1
W, = " - 13
»(%) = 10 50005 7 1 (13)
Wu = ku,ja (14)

respectively. The variablg € {1,2} corresponds to the controller index in the switching sgwatéVeight
W, (s) penalizes glucose deviations from the basal value (ar@@fiang/dl [5]) and weightV,, penalizes
large changes in the insulin injection. Both weights aredhly controller tunning parameters, and are
selected according to the designer’s priorities. In thiskywthese performance weights have been selected
in order to prioritize avoidance of hypoglycemia rathernthibe lack of hyperglycemia, considering the
short and long term consequences of each state.

Robust stability consists in guaranteeing that the cdetr@tabilizes the closed-loop system for any
possible model in the set (4), and therefore stabilizes titedying uncertain dynamics. To this end, the
controller must be computed in order to enstre 1 where

17ll2 < B llysll2-

Variableg is obtained after weighting with the uncertainty dynamics (11) affected by the worstedaound
~Yws corresponding to the particular subject, ig,s W;s(s).

Table 2 summarizes the controller design results. For &jests, the parameter i, was set as
ky1 = 0.5 andk, 2 = 0.07. Note thatk, 5 is significantly smaller tha®,, 1, and therefore provides a lower
weight on the control variable which in turn produces a mggressive controller (higher insulin infusion
at meal times). Parametgf was adjusted for each patient in order to ensure the robatsilist condition
B < 1. Notice that by norm properties < 7, nevertheless forcing < 1 might result in a very conservative
controller design. For this reason, the paramétefior each patient was selected according to the gain
From Table 2 it is clear that those subjects with higher uag#y boundy,,s require lower values of,,
which implies a lower performance, i.e., a worst glucoseilagpn.

Closed-loop simulations were performed considering thieviing conditions: (i) the UVA/Padova
distribution simulator; (ii) a meal of0 g of CHO is ingested at hour; (iii) the aggressive controller
is triggered exactly at meal time and commands the insufimsian; (iv) one hour after meal time, the
conservative controller automatically takes over thelinsdelivery; and (v) a CGM sensor and an insulin

10
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Figure 5: Closed-loop responses for dnesilico adult to a meal of 70 g of CHO at the hody using the nominal controller
(left) and the robust controller (right). Seven variati@iss; are considered and the same CGM noise is applied in all cases f
comparison purposes. The continuous red lines represefitrifis of the 70-250 mg/dl range, the dashed blue lineatdi the
limits of the 70-180 mg/dl range, and the dashed black lindiate the minimum and maximum glucose values.

pump with a delivery resolution of 0.1 U. It is worth clarifyg that meal announcement is made only for
triggering the aggressive controller, but no informatiegarding the carbohydrate amount is required by
the controller, and therefore, no pre-meal insulin bolwsesnfused.

Figure 5 presents simulations of the closed-loop systenoriein-silico adult, where each line corre-
sponds to a particular subjecBs indicated in Section 3. Plots on the right correspond to tbeetl-loop
system with the robust controller designed as mentionelisnsiection. Plots on the left show the closed-
loop responses with a nominal controller, i.e., a contrallesigned considering only the performance ob-
jective (12) and not the model set (4) (model uncertaintyxidugled) with the samé, ; andk, = 1.
Comparing both responses, it can be observed that the nlocoimtaoller is more aggressive than the robust
one, applying higher insulin doses. This result is suitémes; values close t81 ,om, but not when thé;
is far from the nominal value. This is clear in the case of agrsansitive value &= 1.5S1 nom iN Which
a significant postprandial glucose drop can be observedirtrain blood glucose around 40 mg/dl). On
the other hand, the robust controller is more conservatising lower insulin values, but produces a more
uniform response for alf; cases (minimum blood glucose around 90 mg/dl). These seardtreasonable
from the point of view of robust control theory: a controlisat aims for a particular (nominal) model
representation of the patient will show its worst perforeemhen the model does not match the actual
patient. Instead, a robust controller that should manage afsnodels (a more realistic representation of
the patient) already considers possible uncertaintiestin imodel dynamics and parameters, and therefore
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Nominal (white). A = 0%, B= 71%, C = 0%, D = 29%, D = 0%
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Figure 6: Left: CVGA plots of the closed-loop responses bfrakilico adults and theifs; variations for the nominal (white) and
the robust controllers (blue). Right: Time-in-range plots

will perform at its best in general, although in a more cowstve fashion.

Figure 6 provides the closed-loop results foriaHsilico adults in a CVGA (left) and time-in-range
(right) plots. Time-in-range results are computed from mheal time to the end of the simulation. A
comparison is made between the nominal and robust comtagigigns over all subjects, including their
St variations. From the CVGA plot, the nominal controller mets a higher number of subjects in the
lower D-zone (nominal: 29%, robust: 1%), indicating riskhyfoglycemia. Instead, the robust controller
is located in the B- and upper B-zones, achieving a significaduction in hypoglycemic events, compared
to the nominal one. This situation is also shown in the timeainge plot, where a significant reduction of
time in hypoglycemia € 70 mg/dl) is achieved (nominal: 2.67% vs. robust: 0.0%%; 0.05), without
significantly reducing the percentage of time in range [BD] 2ng/dl (nominal: 96.85% vs. robust: 95.48%,
p = 0.108). Although there is a significant reduction in percentagémoé in range [70, 180] mg/dl when
the robust controller is used (nominal: 88.75% vs. robugt1®%,p < 0.05), time in range achieved with
the robust controller is still acceptable. Hyperglycemgbhavior arises as a consequence of the conservative
tendency of the robust controller, coming from a large utaiety bound, and therefore, it can be reduced
by further refining of the uncertainty bounds by means of ntanel better) information of each patient.

5. Conclusions and Futureresearch

In this work, an LPV invalidation technique has been appitea control-oriented LPV model in order to
expand the insulin-glucose description to a set of LPV nm&dEehis set is instrumental for robust controller
design, which in this work has been carried out by a switche®l procedure. The controller design based
on this model set has proved useful when dynamic and parameicertainties appear in the problem.
An illustrative example presents a robust controller tlogtss with uncertainties in the nonlinear dynamics
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(changes in the glucose values) and variatiorts;jras compared to a nominal design.

In terms of future work, an important issue to be solved nsxtaw to apply this modeling strategy
from real clinical data in a minimally invasive way. There aeveral alternatives, but the one that will be
explored is the use of the patient’s daily data recorded byO6GM and pump to invalidate the LPV model
and obtain the patient’s particular model set. In this waplaust controller can be designed, and tested
clinically on the same subject. Using clinical data, whicluld have lower excitability, will not affect the
procedure, since the difference between the clinical dadstlde model output comes from the patient and
the model set obtained (which now represents this patisti)el one to be controlled.

Additionally, there are different approaches to accounpsrameter variations in the controller design
stage. One is to cover them with dynamic uncertainty, as bas presented here, selecting a single uncer-
tainty bound for each patient. Another is to select an LPVeutainty weight for the design that accounts
for its variation with the subject’S;. In the latter approach, a real-time estimatiorSptike the one de-
veloped in [50] from CGM and insulin pump data could be usedhifd approach would be to formalize
intra-patient variations in an LPV model that includes thasiation in a way that allows for the real-time
estimation of patientS; daily variability. The last two approaches could incredse gerformance of the
resulting controller.
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