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Abstract

During the last years wind power has emerged as one of the most important sources in the power generation share.
Due to stringent Grid Code requirements, wind power should provide ancillary services such as fault-ride through and
power oscillation damping to resemble conventional generation. A proper selection of input-output signal pairs to
damp electromechanical oscillations using wind power plants is important to ensure such contribution. In this paper,
different analysis techniques considering both controllability and observability measures and input-output interactions
are compared. From this comparison, recommendations are drawn to select the best signal pairs to damp power system
oscillations considering different approaches, such as single-input single-output and multivariable control.

Keywords: Controllability, damping, frequency domain analysis, observability, power system oscillation, state space
representation, wind power plant.

1. Introduction

As a consequence of increased wind power penetra-
tion levels, transmission system operators (TSOs) are con-
cerned with system stability. Wind power plants (WPPs)
are required by TSOs to meet Grid Code requirements,
and sometimes to behave as conventional power plants be-
ing capable of providing support to the power system when
it is required to maintain stability [1–3]. Power system
stability is divided in three main groups depending on the
response of the system to a fault: frequency, rotor angle
and voltage stability [4].

Rotor angle stability is defined as the capability of syn-
chronous generators to keep or restore the equilibrium be-
tween their mechanical and electromagnetic torques. This
stability issue is usually exhibited by synchronous genera-
tors as low frequency oscillations (LFOs). The main effects
of this type of oscillations are to limit the power trans-
fer capacity of the system and to cause large grid fail-
ures. This problem used to be solved by the installation
of power system stabilizers (PSSs) at synchronous genera-
tors which increase the damping of the system. However,
due to recent technological advances on power system de-
vices, damping of electromechanical oscillations has been
proposed in the literature to be provided by HVDC links,
energy storage systems, flexible AC transmission systems
and wind power generation [5–8]. It is worth to remark
that wind power is located where wind blows stronger and
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is more profitable. Thus, it is difficult to locate a WPP
where power oscillation damping can be better achieved
[9]. The physical location of the WPP plays an important
role when defining the possible input and output signals
for oscillation mitigation if they are measured locally.

Different methods to select the best feedback signal to
damp power oscillations have been discussed in [8, 10–
14], but the case for WPPs has not been yet well covered.
Recent research focuses on the best input-output signal
pairs employing controllability and observability analyses
such as residues and geometric measures [11, 15]. Other
works study the interaction between different controllers
for a multiple-input multiple-output (MIMO, multivari-
able) case and try to determine if a decentralized controller
is possible by using the relative gain array (RGA) [15, 16].
In [17], fundamental limitations of control design by us-
ing local signals to damp remote oscillations are analyzed,
where the interaction between local and remote signals has
an important influence.

The aim of this paper is to compare different controlla-
bility and observability and signal interaction analyses for
power system oscillation damping by using WPPs. The
main advantages and drawbacks of each alternative are
examined. Frequency domain tools such as the RGA and
the multivariable structure function (MSF) [18–20] are em-
ployed to assess the interaction between signal pairs. For
the presence of right hand plane zeros (RHPZs), the aris-
ing control design and performance limitations are clearly
defined [21]. The use of some of these methods is recom-
mended to select the best input-output pairs which ensure
a good controllability and observability of the desired os-
cillation mode, while providing a clear insight of the po-
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tential and limitations of the damping controller. These
suggestions provide a guideline to select the best input-
output signal pairs for different control schemes to damp
power system oscillations by means of WPPs outputs, ei-
ther through single-input single-output (SISO) or multi-
variable (MIMO) control.

2. Power system oscillation damping contribution
using wind power plants

WPPs considering only converter-based wind turbines
dynamics are considerably faster that operational fre-
quency and electromechanical dynamics within the power
systems. Also, it is worth to remark that WPPs are com-
pletely decoupled from network dynamics, in terms of elec-
tromechanical stability; this issue only deals with the be-
haviour of the synchronous machines [3]. For that reasons,
WPP model can be simplified for small signal analysis of
the power systems.

WPPs are commonly regulating the active and reactive
power delivered to the grid. The former is obtained by
controlling the machine-side converter to transfer the max-
imum active power from the generator, and the later by
controlling the grid-side converter [22]. Thus, these sig-
nals are an appropriate selection to be used as damping
control signals. As input signals of the PSS to be included
in the WPP, both local and remote signal measurements
could be selected. From these, the electrical signals can be
obtained in phasor variables (magnitude and phase angle).

At this point, it is important to highlight that the selec-
tion of the proper input-output pair (or pairs), to design
the PSS either SISO or MIMO, presents large influence
in the control response, and it is even more important for
WPPs since they could be located far away from the syn-
chronous generators where electromechanical oscillations
occurs.

To be more precise, power systems can be described by
a set of nonlinear differential and algebraic equations of
the form

˙̂x = f(x̂, û)

ŷ = l(x̂, û)
(1)

where x̂ = [x1, x2, . . . , xn]T is the state, û =
[u1, u2, . . . , um]T is the input, ŷ = [y1, y2, . . . , yr]

T is the
output, and f(·) = [f1(·), f2(·), . . . , fn(·)]T and l(·) =
[l1(·), l2(·), . . . , ln(·)]T are nonlinear functions [4].

For small signal analysis, system (1) is linearized around
an operating point and can be written in state-space form
as

ẋ = Ax+Bu

y = Cx+Du
(2)

where x, u and y are values with relation to the operating
point, A, B, C, and D are matrices of adequate dimen-
sions, and the corresponding transfer function is given by

G(s) = C(sI −A)−1C +D. (3)

Figure 1 shows a feedback loop using a controller K relat-
ing the inputs with the outputs of system.

C

A

B

D

y
xx

K
e u

Figure 1: Block diagram of a plant with feedback

As previously stated for the case of damping power sys-
tem oscillation using wind power plants, the inputs to
the system (or control signals) could be the active, Pwt,
and the reactive power, Qwt, delivered by the wind power
plant, and the outputs (or measured signals) the volt-
age magnitude, Vwt, and the voltage phasor angle,θwt ,
at the connection point of the wind power plant. This
provides several control alternatives to be considered in-
cluding both SISO and MIMO control schemes. For the
SISO case, there are various input-output pair options,
for example, u = Pwt with y = Vwt, u = Qwt with
y = Vwt, among others. In the MIMO case, the input
and output signals are all the proposed at the same time
(u = [PwtQwt]

T y = [Vwt θwt]
T ). The control scheme for

MIMO can be centralized or decentralized; where, for the
last scheme, the proper order input-output signal pair se-
lection has importance in order to permit to design more
effective controllers [21]. Commonly, the selection criteria
for both SISO and MIMO control schemes are based on
controllability and observability concepts and limitations
associated with the frequency response of the open loop
system.

3. Input–Output Selection Methods

3.1. Controllability and Observability Measures

Controllability indicates how the state variables describ-
ing the behavior of a system can be affected by its inputs.
Observability is associated with the possibility of deter-
mining the states from the outputs. More precisely, the
system (2) is said to be controllable, if for any initial state
x(t0), t1 > 0 and final state x1, there exists finite input u
such that x(t1) = x1. The system (2) is observable if, for
any t1 > 0, the initial state x(t0) can be determined from
u(t1) and y(t1) [21].

In damping of power oscillations, it is necessary to de-
termine controllability and observability for specific eigen-
values. A brief description of tests commonly used for this
purpose is presented next.

3.1.1. Popov-Belevitch-Hautus (PBH) test

This consists in evaluating the rank of matrices

C(λk) =
[
λkI −A bi

]
(4)

O(λk) =
[
λkI −A cj

]T
(5)

where λk is the k-th eigenvalue of the matrix A, I is the
identity matrix, bi is the column of B corresponding to i-th
input ui and cj is the row of C corresponding to the j-th
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output yj . The mode λk of linear system (2) is controllable
if matrix C(λk) has full row rank. Similarly, the mode λk
is observable if O(λk) is full column rank [21].

The rank of matrices C(λk) and O(λk) can be evaluated
by their singular values. The singular values of a matrix
M are defined as σi =

√
λk(MTM) (k = 1, . . . , n) with

σ1 ≥ . . . ≥ σn ≥ 0. The matrix rank is then given by the
number of non-null singular values. In practice, due to
numerical limitations, the rank is the number of singular
values greater than a given tolerance. Therefore, the min-
imum singular values σn provide a measure of how close
to singular is the matrix. In the case of matrices C(λk)
and O(λk), σn indicates how far is the system of being
uncontrollable or unobservable, respectively, with respect
to the i-th input and j-th output.

The choice of input and output signals through the PBH
test is done by selecting those with the largest of the mini-
mum singular values σn of matrices C(λk) and O(λk) [10].
Although this is a reasonable input-output selection crite-
rion to determine the most controllable and observable sig-
nals, it is not always clear which pair presents the best joint
controllability and observability characteristics. From a
control point of view, the joint measure is of great impor-
tance.

3.1.2. Residue Analysis

Given the transfer function gij(s) from the input ui to
the output yj , it is always possible to express it as a sum
of partial fractions of the form

gij(s) =
yj(s)

ui(s)
= cj(sI −A)−1bi + dij =

n∑

k=1

Rk
s− λk

+ dij

(6)
where Rk is the residue associated to the mode λk [23].
The residue Rk provides an idea of how the mode λk is
affected by the input ui and how visible is from the out-
put yj . Therefore, the residues are clear measures of joint
controllability and observability of a particular oscillation
mode that is commonly used in damping oscillation anal-
ysis [4, 11, 24].

The residues can be computed directly from the state-
space realization from the expression

Rk = cjφkψkbi (7)

where φk and ψk are the right and left eigenvectors of the
matrix A, respectively, corresponding to the eigenvalue λk.
As in general the residues are complex numbers, the best
input-output signal pair is given by the maximum value of
the residue magnitude. The residues depend on the scale
of the input and output signals and not always provide a
clear comparison among transfer functions associated to
variables with different units.

3.1.3. Geometric Measures

The controllability and observability geometric mea-
sures, respectively, are defined as

mci = cos(θ(ψk, bi)) =
|bTi ψk|
||ψk|| ||bi||

(8)

moj = cos(θ(φk, cj)) =
|cjφk|
||φk|| ||cj ||

(9)

where θ(ψk, bi) is the angle between bi and ψk, and
θ(φk, cj) is the angle between cj and φk. The geomet-
ric measures provide an idea of how aligned the columns
of matrix B and the rows of C are with an eigenvector of
A. If mci = 0, the column of bi is orthogonal to eigenvec-
tor ψk and a controller will not be effective to modify the
state associated to eigenvalue λk. Similarly, if moj = 0, cj
and φk are orthogonal and mode λk will not be observable
from the output yj [25].

A joint geometric measure can be defined as

mcoij = mcimoj . (10)

A zero value of mcoij indicates that λk is non-
controllable/non-observable from the i-th input and the
j-th output. The geometric measures provide a similar
information as the residues, with the advantage of be-
ing normalized and independent of the scale of the sig-
nals. These measures have been used to determine the
best input-output pair in power oscillation damping appli-
cations [12, 25].

Some authors have proposed the use of Hankel singular
values (HSVs) for the selection of input-output pairs [8].
However, it is not possible to connect the controllability
and observability of a particular mode with the HSVs [21].
For this reason, their use is not considered in this paper.

3.2. Limitations caused by right hand plane zeros (RH-
PZs)

It is well-known that non-minimum phase zeros (zeros
in the right hand plane, RHPZ) impose limitations on the
achievable performance [26, 27]. To ensure closed-loop
stability, the controller cannot cancel RHPZs and the fre-
quency response of the closed-loop transfers will have fixed
points that cannot be altered by the controller. For in-
stance, the sensitivity transfer S(s) takes the value 1 at
a RHPZ independently of the controller; that is, if ξ is a
RHPZ, then

S(ξ) = (I +K(ξ)G(ξ))−1 = 1.

These constraints become serious limitations if the RHPZs
are close to the mode to be damped, since the magnitude
of the closed-loop transfer cannot be arbitrarily reduced.
If the controller set is reduced to proportional gains, the
constraints are more serious. A simple root locus analysis
reveals how strong these limitations are. Since the closed-
loop poles tend to the open loop zeros, if an open loop
pole is close to a RHPZ, a small increment in gain may
result in an unstable system and thus it is not possible to
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affect the lightly damped mode. Therefore, any pair with
RHPZs in the range of LFOs should be avoided.

The limitations imposed by RHPZs have been used to
propose input-output selection procedures in [27, 28]. In
the context of damping oscillations in power systems they
have been used in [8, 17].

3.3. Input-output interactions

An alternative view on input-output signal pair selec-
tion can be obtained from the frequency domain. This
allows to evaluate input-output interactions and thus de-
termine if decentralized controllers will be able to achieve
a reasonable closed-loop behavior.

3.3.1. RGA

It allows to evaluate interactions among different inputs
and outputs [21]. In the context of input-output pair se-
lection, it helps to determine the pair with the highest
interaction and to evaluate the possibility of using multi-
variable controllers. The RGA matrix H is defined as

H(s) = [ηij(s)] = G(s)⊗G(s)−T (11)

where [ηij ] denotes the element ij of the matrix H and
the operator ⊗ denotes the Hadamard or Schur product
(element by element product)[21].

For example, in case of systems with two inputs and two
outputs (2× 2 system),

G(s) =

[
g11(s) g12(s)

g21(s) g22(s)

]
(12)

and the RGA is given by

H(s) =

[
η11(s) 1− η11(s)

1− η11(s) η11(s)

]
(13)

with

η11(s) =
g11(s)g22(s)

g11(s)g22(s)− g12(s)g21(s)
. (14)

The following conclusions can be drawn from the RGA
(13) [18, 21].

• If η11 is close to 1, the pairs u1 − y1 and u2 − y2 are
decoupled and can be controlled independently. In
this case, a centralized multivariable controller will
not achieve a better performance than the decentral-
ized one

K(s) =
[
k11(s) 0

0 k22(s)

]
, (15)

in which k11 and k22 can be designed independently.

• If η11 is close to zero, the RGA indicates that the
best pairs for decentralized control should be u1 −
y2 and u1 − y2 and the controllers can be designed
independently if the input-output pairs are reordered.

• Otherwise, the pairs are not decoupled and the decen-
tralized controller should be designed carefully. For
stable plants, input-output pairs with negative steady
state RGA elements should be avoided. Otherwise, if
the sub-controllers are designed independently each
with integral action, then the interactions will cause
instability either when all the loops are closed or when
the loop corresponding to the negative relative gain
becomes inactive.

Notice that the RGA depends on the frequency. There-
fore, the previous analysis should be done in the frequency
range of interest; i.e. the range where LFOs arise.

3.3.2. MSF

It is the building block for Individual Channel Analy-
sis and Design (ICAD) [29, 30]. An appropriate interpre-
tation of the MSF at low and high frequency allows to
determine: the existence and required structure of diago-
nal controllers, the dynamical structure of the closed-loop
system, a reliable measurement of robustness, and the pos-
sibility to satisfy design specifications [18].

In ICAD, the dynamical structure of G(s) is determined
by individual channels Ci(s) resulting from pairing each in-
put to each output by means of diagonal controllers [29].
Consider the 2×2 system in (12) and the decentralized
controller (15). Then the closed-loop system can be repre-
sented as two SISO individual channels Ci(s), each includ-
ing a feedback loop and its controller, as shown in Fig. 2.
The multivariable structure of the plant is encapsulated
by the scalar transfer function γa(s). This representation
is equivalent to the original system with no loss of infor-
mation [29].

k s11( ) g s11( )(1 )- h sga 2( )( )s

d1( )s

Channel 1

r s1( )

k s22( )

d2( )s

Channel 2

r2( )s y2( )s

s1( )y
u s1( )

u s2( )
g s22( )(1 )- s h sga( ) ( )1

Figure 2: Individual channel representation of a 2×2 system

In general, Ci(s) has the open loop SISO transmittance
[29]

Ci(s) = kii(s)gii(s) (1− γa(s)hj(s)) (16)

where

γa(s) =
g12(s)g21(s)

g11(s)g22(s)
(17)

is the MSF and

hj(s) =
kjj(s)gjj(s)

1 + kjj(s)gjj(s)
(18)

describes the impact of controller kjj(s) on the i-th control
loop, subjected to the disturbances

di =
gij(s)

gjj(s)
hj(s)rj(s), (19)
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which represent the effect of reference rj(s) on channel
Ci(s). As it can be seen from Fig. 2 and (16)-(19), the
behavior of Ci(s) is both affected by its controller kii(s)
and by channel Cj(s) [29, 30]. Moreover, the MSF [18]:

• determines the dynamical characteristics of each
input-output configurations and indicates the poten-
tial performance of a feedback control system,

• its adequate interpretation ensures an effective control
system design,

• its magnitude quantifies the coupling between input-
output channels in the frequency domain,

• is related to the plant transmission zeros (zeros of 1–
γa(s), |G(s)| = g11(s)g22(s)− g12(s)g21 = 0).

• γa(s) = 1 determines the non-minimum phase condi-
tion,

• its closeness to (1,0) in the Nyquist plot indicates to
what extent the plant is sensitive to uncertainty in
terms of gain and phase margins.

If the channels are defined by pair u1-y2 and u2-y1, then
the MSF is given by

γb(s) =
g11(s) · g22(s)

g12(s) · g21(s)
= γ−1a (s) (20)

and
Ci(s) = kij(s)gji(s) (1− γb(s)hj(s)) . (21)

Notice that H can be expressed in terms of the MSFs
[18]:

H =

[
1

1−γa(s)
γa(s)
γa(s)−1

γa(s)
γa(s)−1

1
1−γa(s)

]
=

[
γb(s)
γb(s)−1

1
1−γb(s)

1
1−γb(s)

γb(s)
γb(s)−1

]
.

(22)

4. Case Study

The different methods presented in Section 3 are as-
sessed through the test system shown in Fig. 3, which has
been previously used to show the interaction between con-
ventional generation and WPPs [31]. The WPP including
converter-based wind turbines is assumed as a negative
load, since the converter dynamics are considerably faster
than the electromechanical dynamics that this work is fo-
cused on. For the same reason, the transmission lines are
modeled as reactances, with the capacitor dynamics in PI
representations being neglected. This approach has been
previously used in [32]. The system parameters can be
found in the Appendix.

The linearized system is represented in state-space form
as (2), where

x = [δ ω E′]T , u = [PwtQwt]
T , y = [Vwt θwt]

T (23)

The state variables x represent the angle and frequency
of the rotor and the exciter control variable of the syn-
chronous machine. The input u is the aggregated active

X’ X12
X2 aaaaaaaaaaaaaaaaa
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aaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaa

(PV) G 1
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Infinite Bus
(Slack)

8

8

Xwt2

E d V1 q1 V2 q2 V q8 8

Vwt qwt

P j Qwt + wt

WT

.

Figure 3: Electrical network representation of the power system un-
der study

and reactive power and the output y is the voltage magni-
tude and phase angle of the WPP. Matrix A has a lightly
damped oscillation mode at λ12 = −0.0119 ± 8.30375j,
with frequency 1.322 Hz and a damping coefficient of
0.00144.

As it can be seen in (23), the system is 2× 2. Although
simple in nature, it is representative enough to clearly as-
sess the tools presented in Section 3. The use of more
complex system representation is out of the scope of this
work; however, the tools here presented could be equally
applied to systems with additional inputs and outputs. It
should also be noted that the impact of measuring remote
signals using wide-area measurement systems could be in-
cluded through the introduction of time delays, but it is
out of scope of this paper. Instead, it is assumed that all
signals are available (either through direct measurement
or estimation).

4.1. Controllability and Observability Measures Compari-
son

The controllability and observability measures previ-
ously presented were compared using the system under
study. According to (23), four possible signal pairs can be
analyzed: Pwt-Vwt, Qwt-Vwt, Pwt-θwt and Qwt-θwt.

4.1.1. PBH test

The singular values corresponding to the C(λ1) and
O(λ1) are listed in Tables 1 and 2. Notice that matrix
C(λ1) depends on matrices bi and not on cj . For this rea-
son, Table 1 has only two columns. The same applies to
O(λ1), with results in Table 2. The largest of the minimum
singular values for the possible signal pairs is highlighted.
It can be observed that the most controllable pairs cor-
respond to those with the active power delivered by the
WPP (Pwt) as an input. The most observable pairs are
those with the phase angle of the WPP connection point
(θwt) as an output.

Pwt-Vwt/Pwt-θwt Qwt-Vwt/Qwt-θwt
78.9950 77.6115
8.3223 8.3224
1.6480 0.5251

Table 1: Singular Values of Matrix C(λ1)

It can be concluded that the best signal pair is Pwt-θwt
since it renders the largest of the minimum singular values
for both matrices. Also, it can be seen that the worst signal
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Pwt-Vwt/Qwt-Vwt Pwt-θwt/Qwt-θwt
77.461 77.462
8.329 8.323
0.002 0.045

Table 2: Singular Values of Matrix O(λ1)

pair is Qwt-Vwt. However, the next best possible pair is
not clear from the remaining options since the PBH test
does not provide any joint controllability and observability
measure.

4.1.2. Residue Analysis

The magnitude of the residues are listed in Table 3. It
can be observed that the maximum value corresponds to
the pair Pwt-θwt. This is consistent with the information
provided by the PBH test and this signal pair should be
selected as a first option. It should be mentioned that a
well-known PSSs design method to damp oscillations exists
based on residue analysis [24]. Conversely to the PBH test,
it clearly defines the best order of the signal pairs due to its
joint controllability and observability measurement test.

Pwt-Vwt Qwt-Vwt Pwt-θwt Qwt-θwt
|Ri| 0.018 0.006 0.349 0.109

Table 3: Residue values

4.1.3. Geometric Measures

These are given in Table 4. The joint controllability and
observability measure mco shows that the signal pair to be
selected must be Pwt-θwt since it has the maximum value
among the input-output pairs. These results are consistent
with those obtained previously. However, in this case the
information is clearer since the values are normalized.

Pwt-Vwt Qwt-Vwt Pwt-θwt Qwt-θwt
mc 0.9928 0.9927 0.9928 0.9927
mo 0.3842 0.3842 0.9505 0.9505
mco 0.3815 0.3814 0.9437 0.9436

Table 4: Geometric Measures

4.2. RPHZs

The transfer function corresponding to the system under
analysis is given by G(s) in (12), where

g11(s) = − 0.032727(s+0.5314)(s2−0.08487s+78.87)
(s+0.3985)(s2+0.02391s+68.95)

g12(s) = 0.23117(s+0.4832)(s2+0.01688s+69.35)
(s+0.3985)(s2+0.02391s+68.95)

g21(s) = 0.23766(s+0.4036)(s2+0.0181s+93.34)
(s+0.3985)(s2+0.02391s+68.95)

g22(s) = − 0.021838(s+0.535)(s2−0.2433s+151.9)
(s+0.3985)(s2+0.02391s+68.95)

(24)

Fig. 4 shows the Bode plots of the individual transfer
functions in (24). For clarity, Fig. 4(a) features the diag-
onal elements gii(s) and Fig. 4(b) the off-diagonal entries
gij(s) of G(s). It can be clearly seen that the damping con-
troller should act in the region 8-11 rad/s (1.2-1.75 Hz).
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Figure 4: Bode diagrams of transfer functions gij(s)

In equation (24), it can be seen a pair of complex RHPZs
in the individual transfer functions g11(s) and g22(s) close
to the lightly damped mode λ12 = −0.01196± j8.3038. In
the Bode plots in Fig. 4(a), a resonance peak caused by the
low damping of λ12 can be observed. The contribution of
180 degrees of the non-minimum phase zeros is also clear
in these plots. In the rest of the frequencies, the magni-
tudes of g11(s) and g22(s) are below −20 dB, suggesting
a small contribution of input Pwt to output Vwt and in-
put Qwt to output θwt. Fig. 4(b) shows g12(s) and g21(s).
The proximity of the oscillation mode λ12 to the lightly
damped zeros tends to cancel the resonances peaks; how-
ever, in these cases the minimum phase zeros contribute
with positive phase. The magnitude of transfer functions
gij(s) is higher compared to that of gii(s).

If disturbances at the voltage are considered, the closed-
loop transfer is given by

gcl,ij(s) = (1 +Kij(s)gij(s))
−1.

Due to the RHPZs in g11 and g22 (ξ11 = 0.0424± 8.8808j
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and ξ22 = 0.1216± 12.3242j), regardless the controller

gcl,11(ξ11) = gcl,22(ξ22) = 1.

This implies that it will be difficult to reduce the reso-
nance peak and thus to increase the damping of mode λ12,
especially in case of g11 where ξ11 is quite close to λ12 [26].

This preliminary analysis suggests avoiding signal pairs
directly associated to individual elements g11(s) and g22(s)
due to the limitations imposed by the presence of RHPZs;
i.e., Pwt-Vwt and Qwt-θwt. Nevertheless, since no conclu-
sion has been made about the internal coupling of the plant
it is not apparent how the RHPZs of g11(s) and g22(s) will
reflect on the signal pairs associated to off-diagonal trans-
fer functions g12(s) and g21(s) (i.e., Pwt-θwt and Qwt-Vwt).

4.3. Input-output interactions

4.3.1. RGA

The elements of matrix H for the 2 × 2 system under
study are

η11 =
−0.0132(s+0.54)(s+0.53)(s2−0.085s+77.87)(s2−0.24s+154.9)

(s+0.484)(s+0.398)(s2+0.0239s+68.95)(s2+0.018s+92.85)

η12 =
1.013(s+0.48)(s+0.4)(s2+0.017s+69.35)(s2+0.018s+93.34)
(s+0.484)(s+0.398)(s2+0.0239s+68.95)(s2+0.018s+92.85)

(25)
Fig. 5 shows the Bode diagrams of the diagonal and

off-diagonal RGA entries. It can be seen that η11(s) (di-
agonal elements of H) are negative for most frequencies
and their magnitude small. This can be concluded after
examination of (25) and the phase plot in Fig. 5. Phases of
180 deg and −540 deg correspond to negative magnitudes,
and overall η11(s) will only be positive for a narrow mar-
gin of frequencies between 8 − 10 rad/s. Conversely, the
magnitude of η12(s) (off-diagonal elements of H) is close
to unity (i.e., 0 dB), as shown by Fig. 5. Simple inspection
of (25) shows that η12(s) has a positive magnitude for all
frequencies. This is corroborated by the nearly constant
phase of 0 deg in Fig. 5.
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Figure 5: Bode diagrams of RGA matrix H entries

As outlined in Section 3.3, in case of using decentralized
controllers with independently designed elements, input-
output pairs with positive diagonal (or off-diagonal) en-
tries are recommended. Since the magnitude of η11(s)

is negative for most frequencies, pairs Pwt-Vwt and Qwt-
θwt should be avoided. Furthermore, since the magnitude
of η12 is close to unity, the corresponding input-output
pairs (i.e., Pwt-θwt and Qwt-Vwt) could be treated as SISO
plants. It should be noted that the change of sign at some
frequencies in η11(s) implies that RHPZs are present in
plant G(s), which is consistent with (24). However, it is
not clear how those non-minimum phase zeros will affect
the control system design and performance arising from
the pair definition.

4.3.2. MSF

Using (17) and (20), the MSFs of (24) become

γa =
76.87(s+0.483)(s+0.404)(s2+0.017s+69.35)(s2+0.018s+93.34)

(s+0.535)(s+0.531)(s2−0.0849s+77.87)(s2−0.243s+151.9)

γb =
0.013(s+0.535)(s+0.531)(s2−0.085s+77.87)(s2−0.24s+151.9)
(s+0.483)(s+0.404)(s2+0.0169s+69.35)(s2+0.0183s+93.34)

(26)
An adequate interpretation of the MSFs allows a com-

plete evaluation of the control system design limitations
arising from the presence of RHPZs and the multivariable
character of the plant. This goes beyond the information
provided by the RGA analysis [18]. Since G(s) was ob-
tained from a state-space form, the number of RHPZs of
(1− γa(s)) is given by [20]

Z = N + P −Q, (27)

where Z is the number of RHPZs of (1− γa(s)), P is the
number of right hand plane poles (RHPPs) of γa(s), N
is the number of clockwise encirclements to (1, 0) in the
Nyquist plot of γa(s), and Q is the number of eigenvalues
in the right hand plane of the state-space representation.
This is an application of the Nyquist stability criterion
[20].
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Figure 6: Assessment of MSFs γa(s) and γb(s)

Fig. 6 shows the Bode plots of MSFs γa(s) and γb(s). It
can be seen that the coupling resulting from pairing Pwt-
Vwt and Qwt-θwt is high for all frequencies, as evidenced
by the magnitude of γa(s) above 20 dB. From (26), it is
evident that γa(s) has four RHPPs; i.e., P = 4. As shown
by (24), for this system Q = 0. Since γa(0) = 28.85, the
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Nyquist plot starts at the right side of (1, 0). The Nyquist
plot of γa(s) given in (26) encircles (1, 0) four times in
counter-clockwise direction, implying that N = −4. Thus,
applying (27) (1− γa(s)) contains no RHPZs; i.e., Z = 0.

The information obtained from the previous analysis is
revealing. When considering the signal pairs Pwt-Vwt and
Qwt-θwt, the associated individual channels defined by (16)
are non-minimum phase. This is not a consequence of the
multivariable character of the plant, as evidenced by the
lack of RHPZs in (1−γa(s)), but to those RHPZs appear-
ing in the diagonal transfer functions g11(s) and g22(s)
(equation (24)). Examination of the Bode plots gii(s) in
Fig. 4 shows that the frequency of those RHPZs is around
the frequency of the oscillation mode λ1. In order to avoid
instability, the bandwidth of the oscillation damper should
be restricted below the range of frequencies at which it
should act to damp electromechanical oscillations. These
are two conflicting and irreconcilable control design objec-
tives and, therefore, the MIMO damper design employ-
ing signal pairs Pwt-Vwt and Qwt-θwt is not recommended.
Even if this was not the case, the fact that γa(s) has RH-
PPs implies that (1 − γa(s)) will preserve such structure.
Thus, the damping controller would require the stabiliza-
tion of an unstable plant with non-minimum phase zeros,
which is not a trivial task [21].

Fig. 6 also shows that the internal coupling of the plant
arising from pair Pwt-θwt and Qwt-Vwt is weak: the magni-
tude of γb(s) is below −20 dB for most frequencies except
for those where the damping controller should act. From
(26) it is evident that γb(s) has no RHPPs (P = 0). The
Nyquist trajectory of γb(s) given by (26) starts to the left
of (1, 0) and no encirclements to this point occur, implying
that N = 0. Applying (27), Z = 0 and thus (1 − γb(s))
contains no RHPZs. Moreover, transfer functions g12(s)
and g21(s) have no RHPZs. In spite of the presence of
RHPZs in g11(s) and g22(s), this does not reflect on the
input-output channel definition associated to γb(s) in (16).
Based on this analysis, the input-output pairs Pwt-θwt and
Qwt-Vwt should be considered for a MIMO controller de-
sign.

4.4. Simulations

In order to illustrate the previous results, time domain
simulations were carried out. The test system of Fig. 3
was implemented in MATLAB/Simulink. A controller of
the form Kpss = K(sTw/(sTw + 1)) was designed using a
root locus approach, where Kpss was formed by a washout
filter with a time constant Tw = 2s, a gain K = 3 and a
limiter. Such a controller structure was used for the case
of independent four input-output SISO pairs and when
evaluating MIMO configurations. The controller parame-
ters remained the same to offer a meaningful comparison
while ensuring system stability for all SISO cases. In other
words, for the following results Kpss = k11 = k22 = k12 =
k21.

Fig. 7 shows the simulation results (input and output
variables) for SISO designs considering input-output pairs
Pwt-Vwt and Qwt-θwt and for the case of a decentralized
MIMO design considering the pairs defined by γa(s) (i.e.,
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Figure 7: Simulation responses (voltage magnitude, phase angle of
the voltage, active power, and reactive power at WPP bus) for SISO
and MIMO designs involving input-output pairs Pwt-Vwt and Qwt-
θwt.

C1(s): Pwt-Vwt and C2(s): Qwt-θwt). The simulation
starts with the system at steady state. At 5s, an impulse
variation on the mechanical power reference of the syn-
chronous machine is done, in order to excite the oscillation
mode existing on the system. As it can be observed, the
system becomes unstable for the MIMO design. This was
expected since MSF γa(s) features RHPPs and the sim-
ple controllers used are not able to modify its structure.
It could be argued that a more complex MIMO controller
may stabilize the plant, but this is out of the scope of this
work. Conversely, the system is stable when considering
the designs for the SISO pairs, but non-minimum phase
zeros are present. Moreover, the damping contribution
is weak in either SISO case and the oscillations are not
damped during the simulation horizon. It could be argued
that the performance may be improved by increasing the
proportional gain of the controller, but care should be ex-
ercised since the system may become unstable due to the
presence of RHPZs.

Fig. 8 shows the simulation results for the SISO designs
considering input-output pairs Pwt-θwt and Qwt-Vwt and
for the case of a decentralized MIMO design considering
the pairs defined by γb(s) (i.e., C1(s): Pwt- θwt and C2(s):
Qwt-Vwt). As it can be seen, in both SISO cases the oscilla-
tions are damped after a transient period. When consider-
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Figure 8: Simulation responses (voltage magnitude, phase angle of
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ing the SISO pair Pwt-θwt, the magnitude of the voltage,
its phase angle and the reactive power show less oscilla-
tions than for the SISO case with Qwt-Vwt. This was ex-
pected from the analysis carried out in previous sections.
When using the same controller in both individual chan-
nels, it can be seen that the MIMO design produces the
best damping performance in all variables except for the
case of active power, where the oscillations take a longer
time to be eliminated. This superior performance was ex-
pected since the MIMO design takes the damping contri-
bution of both feedback loops.

It should be emphasized that the results obtained in
Figs. 7 and 8 agree on well with the analyses carried out
with the controllability and observability tools and the fre-
quency domain approaches from the previous sections. It
is also apparent that the best performance for any possi-
ble SISO alternative is achieved when considering input-
output pair Pwt-θwt.

5. Conclusion

Several tools have been used to decide which input-
output configuration is more adequate to damp oscillations
in power systems with WPPs. Controllability and observ-
ability tests have been analyzed – in particular, those al-

lowing the evaluation of specific oscillation modes (PBH,
residues and geometric measures). Among them, the most
recommended are the geometric measures since they pro-
vide a normalized joint controllability and observability
measure. The normalization is useful for the input-output
selection because in general the input-output pairs have
different scales.

The limitations imposed by the presence of RHPZs on
performance have been considered. The stabilization of
a plant with RHPZs gives rise to fixed points in the fre-
quency response. As a consequence, if the RHPZs are close
to the oscillation modes, there is no controller capable of
achieving a substantial increment in damping.

Interactions among input-output pairs were analyzed
to assess the possibility of a multivariable control design.
RGA and MSF are useful tools to determine the most ade-
quate signal pairs for decentralized control. An advantage
of using the MSF approach over the RGA analysis, in addi-
tion to the definition of signal pairs afforded through both
approaches, is that the potential dynamic performance and
control system design of the oscillation damper can be eval-
uated. Moreover, through a careful analysis of the MSFs
a clear effect of the limitations arising from RHPZs can be
clearly defined.

In order to illustrate the different alternatives, a power
system including a WPP was analyzed. A simple oscilla-
tion damper obtained through classic control design was
employed to carry out time domain simulations. Simula-
tion results show a system behavior in agreement with the
previous analyses.
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Appendix

The power system, synchronous generator and operation
point values are presented as follows

Pg Pwt Qwt E′ ωs (rad/s) X12 Xwt2 X2∞
0.8 0.4 0 1 100π 0.1 0.1 0.2

Table .5: Power system parameters (in p.u. except indicated)[31]

T0 H (s) Xta X ′

6 4 1.1 0.15 + Xta

Table .6: Synchronous machine parameters (in p.u. except
indicated)[31]
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E′0 δ0 Vwt0 θwt0 V20
1 0.5283 0.9889 0.2858 0.9897
θ20 V10 θ10 Vib0 θib0

0.2449 0.9961 0.3262 1 0

Table .7: Operating point, where voltages and angles are in expressed
in p.u and in rad, respectively.
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