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Interpolation for gain scheduledcontrolwithguarantees ⋆
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Abstract

Here, a methodology is presented which considers the interpolation of LTI controllers designed for different operating points
of a nonlinear system in order to produce a gain-scheduled controller. Guarantees of closed-loop quadratic stability and
performance at intermediate interpolation points are presented in terms of a set of LMIs. The proposed interpolation scheme
can be applied in cases where the system must remain at the operating points most of the time and the transitions from one
point to another rarely occur, e.g. chemical processes, satellites.
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1 Introduction

Gain-scheduling has been used successfully to control
nonlinear systems for many decades and in many differ-
ent applications, such as autopilots and chemical pro-
cesses (Rugh & Shamma, 2000). It consists in selecting
a family of operating points or more generally regions,
where the system can be described by a linear model. A
linear controller is designed for each region which should
guarantee performance and robustness in that region. Fi-
nally the controllers are changed according to a physical
parameter measured in real time, which detects in what
region the system is working at each time. The change
of controllers can be implemented either gradually by
interpolation of certain parameters or by switching.

In practice, the switching among controllers may create
instability of the closed loop system (Liberzon, 2003).
Unstable modes and degraded performance may come
from the transition dynamics, which are not contained
in the information provided by each linear model. Usu-
ally, a way to mitigate this problem is to impose certain
dwell time (Hespanha & Morse, 1999). However, this
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is not able to prevent the undesirable transients, which
may require complex algorithms to reduce their negative
effects.

On the other hand, interpolated gain scheduled con-
trollers provide a smooth change among them. In gen-
eral, this is a fairly simple solution in the cases of SISO
problems or fixed structure controllers, such as PIDs or
lateral-directional aircraft control, due to the fact that
only certain fixed parameters are interpolated, e.g. gains,
poles, numerator/denominator coefficients. However, in
more general cases where the set of controllers have been
designed independently or are MIMO models, the im-
plementation of the parameter interpolation is not as
simple. In addition, in these cases it is convenient to in-
terpolate the controller state-space realization instead
of parameters from its transfer matrix.

Stability and performance guarantees in the whole op-
erating envelope can be obtained using linear parame-
ter varying (LPV) systems theory (Apkarian, Gahinet &
Becker, 1995; Wu, Yang, Packard & Becker, 1996). The
main problem of this method is the computational effort
needed to obtain an LPV controller which limits its use
from low to medium order systems. In addition, in many
fields, e.g. aerospace, there is a strong interest of prac-
titioners in using the gain-scheduling method, based on
optimized designs at different operating points.

For controllers designed independently for each point,
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previous results have focused on stability (Stilwell &
Rugh, 2000; Chang & Rasmussen, 2008) or on controller
switching instead (Hespanha & Morse, 2002; Blanchini,
Miani & Mesquine, 2009). In particular in Chang &
Rasmussen (2008), the Youla parametrization has been
used, but a network of controllers is produced which
significantly increases the order of the resulting gain-
scheduled control. Some recent results consider the per-
formance problems by establishing an adequate con-
troller initial condition when switching (Hespanha, San-
tesco & Stewart, 2007) or by injecting stabilizing sig-
nals among the local controllers, based on bumpless and
antiwindup transfer compensators (Hencey & Alleyne,
2009). There are no results focused on both, stability
and performance, based on the adequate selection of the
state-space realizations for interpolation.

This paper focuses on formulating a stability preserving
interpolation scheme with a performance level guaran-
tee in the state-space framework. The aim is to obtain
gain scheduled controllers with similar stability proper-
ties as LPV versions and with the possibility of tuning
each LTI controller independently. Next section presents
the problem statement and Section 3 the main results,
illustrated by a short example in Section 4. The paper
ends in Section 5 with some concluding remarks.

2 Problem statement

Consider the set of linear models

Gi(s) =




Ai B1,i B2

C1,i D11,i D12

C2 D21 0


 , i ∈ Inp (1)

describing the local dynamic behavior of a nonlinear or
time-varying system at each operating point parameter-
ized by ρi ∈ P , with Ai ∈ Rn×n and Inp = {1, . . . , np}.
The set of points {ρ1, . . . , ρnp} divides the region P in
a set of subregions Pj defined by the vertices Vj ⊆
{ρ1, . . . , ρnp} as illustrated in Figure 1. Then, any point
ρ ∈ Pj can be expressed as a convex combination of the
vertices Vj, i.e.,

ρ =

np∑

i=1

αiρi (2)

where α1 + · · · + αnp = 1 and αi ≥ 0, ∀ρi ∈ Vj , αi =
0, ∀ρi /∈ Vj .

The local dynamics at any point ρ ∈ Pj is assumed to
be described as a linear combination of the state-space
realizations corresponding to the vertices Vj

G(ρ) :





ẋ = A(ρ)x+B1(ρ)w +B2u,

z = C1(ρ)x +D11(ρ)w +D12u,

y = C2x+D21w,

(3)

ρ1 ρ2 ρ3 ρm

ρm+1 ρm+2 ρm+3 ρ2m

ρm+l+1 ρm+l+2 ρm+l+3 ρ2m+l

P1

Figure 1. Example of division of the region P

where

[
A(ρ) B1(ρ)

C1(ρ) D11(ρ)

]
=

np∑

i=1

αi(ρ)

[
Ai B1,i

C1,i D11,i

]

and αi(ρ) is the coordinate corresponding to ρi.

According to (2), only the matrices corresponding to
ρi ∈ Vj are needed to compute system (3). This class
of models is called piecewise affine LPV systems (Lim
& How, 2003), which includes the classical affine LPV
models. The assumption that B2, C2, D12 and D21 are
constant does not impose a serious constraints. This can
be fulfilled by simply filtering the input u and/or the
output y (see Apkarian et al., 1995).

It is assumed that there exists a stabilizing linear con-
troller designed beforehand and independently for each
plant Gi(s)

Ki(s) =


Ak,i Bk,i

Ck,i Dk,i


 , i = 1, . . . , np (4)

which achieves certain performance specifications, with
Ak,i ∈ Rnc×nc . This differs from other synthesis proce-
dures applicable to the plant (3) like the griddingmethod
proposed by (Wu et al., 1996) or the switching LPV
framework by (Lim & How, 2003), where the local con-
trollers are computed simultaneously.

Then, the objective is to formulate an interpolation
scheme for the state-space realizations (4) such that the
gain-scheduled controller

K(ρ) :

{
ẋk = Ak(ρ)xk +Bk(ρ)y,

u = Ck(ρ)xk +Dk(ρ)y,
(5)

stabilizes the plant G(ρ) defined in (3) at any point ρ ∈
P , with Ak(ρ) ∈ Rnk×nk . Note that the order of the
local controllers (4) may differ from the order of the gain-
scheduled controller (5) (i.e., in general, nc 6= nk).

3 Main results

The following lemma provides a systematic method to
find a quadratically stable interpolation of several Hur-
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witz matrices. If the set of matrices Ai represents the
local dynamics of an LPV system at the vertices of a
convex hull co{ρ1, . . . , ρnp}, the following results states
that given a set of Hurwitz matrices, it is always possible
to construct a quadratically stable affine LPV matrix.

Lemma 3.1 Given a set of matrices Ai associated to
each vertex of the convex hull Θ = co{ρ1, . . . , ρnp}, the
following statements are equivalent

i) Ai is Hurwitz for all i ∈ Inp ,
ii) there exist np matrix transformations Ti such that the

LPV matrix

Ã(ρ) =

np∑

i=1

αi(ρ)Ãi =

np∑

i=1

αi(ρ)TiAiT
−1
i (6)

is quadratically stable for all ρ ∈ Θ, with αi(ρ) = αi

in ρ =
∑np

i=1 αiρi such that
∑np

i=1 αi = 1.

Proof: i) ⇒ ii), if Ai is Hurwitz, then ∃ Xi > 0 such
thatXiAi+AT

i Xi < 0, i ∈ Inp . According to (Hespanha
& Morse, 2002), it is always possible to find state trans-

formations Ti (e.g. Ti = X
1/2
i ) such that

XÃi + ÃT
i X < 0, ∀ i ∈ Inp (7)

for a common X > 0, with Ãi = TiAiT
−1
i . Finding the

coordinates αi(ρ)’s, ρ as a convex combination of the
vertices of Θ, the LPV matrix (6) can be constructed.
Based on αi ≥ 0, ∀ i ∈ Inp , inequalities (7) and linearity,

X

( np∑

i=1

αi(ρ)Ãi

)
+

( np∑

i=1

αi(ρ)Ãi

)T

X < 0 (8)

and thus the quadratical stability of Ã(ρ) is proved.

ii)⇒ i), take ρ = ρm, with ρm one of the vertex of Θ, then

αm = 1, and αi = 0, ∀ i 6= m. Therefore, Ã(ρ) = Ãm

and from (8) it can be concluded that Ãm is Hurwitz
and thus Am. 2

3.1 Quadratically stable interpolation

Based on the previous results and the Youla
parametrization, a quadratically stable interpolation
procedure is formulated. It computes non minimum
state-space realizations of the controller matrices which
leads to a quadratic stabilizing gain scheduled controller
when they are linearly interpolated. The computation of
these state-space realizations is based on an LMI opti-
mization problem. This is an extension of the results in
Hespanha & Morse (2002), using a technical tool from
Xie & Eisaka (2004).

Theorem 3.2 Given the set of plants (1) and the set of
stabilizing controllers (4), if there exist positive definite
matrices X1 ∈ Rn×n, X2,i ∈ Rnq×nq and X3 ∈ Rn×n,
matrices Vi and Wi such that

(X1Ai +WiC2) + (X1Ai +WiC2)
T < 0, (9)

(X2,iAq,i) + (X2,iAq,i)
T < 0, (10)

(AiX3 +B2Vi) + (AiX3 +B2Vi)
T < 0 (11)

for all i ∈ Inp , with

Aq,i =

[
Ai +B2Dk,iC2 B2Ck,i

Bk,iC2 Ak,i

]
,

then the gain scheduled controller (5) quadratically sta-
bilizes the plant (3) for all ρ ∈ P, and its state-space
matrices are

Ak(ρ) =

np∑

i=1

αi(ρ)

[
Ai +B2Fi +HiC2 −B2Dk,iC2 B2C̃q,i

−B̃q,iC2 Ãq,i

]
,

(12)

Bk(ρ) =

np∑

i=1

αi(ρ)

[
B2Dk,i −Hi

B̃q,i

]
, (13)

Ck(ρ) =

np∑

i=1

αi(ρ)
[
Fi −Dk,iC2 C̃q,i

]
, (14)

Dk(ρ) =

np∑

i=1

αi(ρ)Dk,i, (15)

Ãq,i = TiAq,iT
−1
i , B̃q,i = Ti

[
B2Dk,i −Hi

Bk,i

]
,

C̃q,i =
[
Dk,iC2 − Fi Ck,i

]
T−1
i ,

Ti = X
1/2
2,i , Fi = ViX

−1
3 , Hi = X−1

1 Wi, (i ∈ Inp).

Proof:According to theYoula parametrization, any sta-
bilizing controller K̃i(s) for the plant Gi(s) can be ex-
pressed as a linear fractional transformation (LFT)

K̃i(s) = Fℓ(Ji(s), Qi(s)) =


 Ãk,i B̃k,i

C̃k,i D̃k,i


 ,

Ji(s) =




Ai +B2Fi +HiC2 −Hi B2

Fi 0 I

−C2 I 0


 , (16)

Qi(s) =


Aq,i Bq,i

Cq,i Dq,i


 ,
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with Aq,i a Hurwitz matrix. After straightforward ma-
nipulations, it can be proved that if

Qi(s) =




Ai +B2Dk,iC2 B2Ck,i B2Dk,i −Hi

Bk,iC2 Ak,i Bk,i

Dk,iC2 − Fi Ck,i Dk,i


 ,

(17)

the controllers K̃i(s) are I/O equivalent to the original
local controllers Ki(s). Note that Aq,i corresponds to
theAmatrix of the closed loop systemFℓ(Gi(s),Ki(s)),
hence Qi(s) is stable if the controller Ki(s) stabilizes
Gi(s). Then, replacing the controller matrices (LFT in-
terconnection between (16) and (17)) in the closed loop
matrix

Acℓ,i =

[
Ai +B2D̃k,iC2 B2C̃k,i

B̃k,iC2 Ãk,i

]

and applying a similarity transformation, the following
result is obtained

Acℓ(ρ) =

np∑

i=1

αi(ρ)




AH,i 0 0

Bq,iC2 Aq,i 0

BH,iC2 B2Cq,i AF,i


 , (18)

with AH,i = Ai +HiC2, AF,i = Ai + B2Fi and BH,i =
B2Dq,i −Hi. Next, to ensure quadratic stability at any
point in P amatrixXcℓ > 0 must be computed such that
XcℓAcℓ(ρ)+Acℓ(ρ)

TXcℓ < 0. Due to the block triangular
structure of Acℓ(ρ) (Lemma 2 in Xie & Eisaka (2004)),
the previous inequality is satisfied if the following three
ones hold

np∑

i=1

αi(ρ)(X1AH,i +AT
H,iX1) < 0, (19)

np∑

i=1

αi(ρ)(Y2Aq,i +AT
q,iY2) < 0, (20)

np∑

i=1

αi(ρ)(Y3AF,i +AT
F,iY3) < 0, (21)

with Xcℓ = diag(X1, Y2, Y3) ∈ R(2n+nq)×(2n+nq).

Taking into account that the Aq,i’s are Hurwitz matrices
by construction and the result in Lemma 3.1, if X2,i =
T T
i Y2Ti, the inequality (20) is equivalent to (10). On

the other hand, using the vertex property (see Apkarian
et al., 1995), (19) and (21) can be reduced to prove the
existence of positive definite matricesX1 andX3 = Y −1

3
which satisfy (9) and (11) at each i ∈ Inp with Wi =

X1Hi and Vi = FiX3. 2

Note that nq = n+nc and nk = n+nq = 2n+nc and the
resulting gain-scheduled controller order is independent
of the number of points np. This is more efficient than
previous results (Chang & Rasmussen (2008)) based on
the Youla parametrization which produce a network of
controllers with a final order directly proportional to np.

3.2 Performance during transitions

In general, all results on gain scheduling center their
attention only on preserving the stability during tran-
sitions among controllers. However, a stability preserv-
ing interpolation does not necessarily guarantee the per-
formance levels achieved at any design point ρi. The
reason can be found in the fact that it is not simple
to obtain a controller providing a uniform performance
level when each controller is designed independently.
The LPV framework gives a complete solution to this
problem. However, all controllers are designed simulta-
neously which may limit the local performance levels.

Here, the problem is posed as the search for the state-
space realizations of K̃i(s)’s that achieve the best per-
formance possible in the intermediate points without de-
grading the performance at the design points ρi. This
constraints depends on the particular criterium em-
ployed to measure the performance specifications. In the
following paragraphs the H∞ performance case is dis-
cussed, although other cases can be addressed in a sim-
ilar way. Imposing a block diagonal structure on Xcℓ, at
the expense of certain conservatism, the search for the
realizations reduces to the following result.

Theorem 3.3 Given the set of plants (1) and the set
of controllers (4) such that ‖Fℓ(Gi(s),Ki(s))‖∞ < γi.
If there exist positive definite matrices X1, X2,i and X3

and matrices Fi andHi (i ∈ Inp) such that the np matrix
inequalities (22) are satisfied, then the controller (5) with
state-space realization (12)-(15) quadratically stabilizes
plant (3), ∀ρ ∈ P and guarantees a performance level
‖z‖2 < γ‖w‖2, with γi ≤ γ, ∀ i ∈ Inp .

Proof: Define Xcℓ = diag(X1, Y2, Y3) ∈
R(2n+nq)×(2n+nq) and replace the parameter matrices by

Ãq,i = TiAq,iT
−1
i , B̃q,i = TiBq,i, C̃q,i = Cq,iT

−1
i .

in the closed loop matrices Acℓ,i in (18), and in

Bcℓ(ρ) =

np∑

i=1

αi(ρ)




B1,i +HiD21

B̃q,iD21

BH,iD21


 ,

Ccℓ(ρ) =

np∑

i=1

αi(ρ)
[
C1,i +D12Dk,iC2 D12C̃q,i C1,i +D12Fi

]
,

4






X1AH,i + (⋆) (Bq,iC2)
TX2,i CT

2 B
T
H,i X1(B1,i +HiD21) (C1 −D12Dq,iC2)

T

⋆ X2,iAq,i + (⋆) (B2Cq,i)
T X2,iBq,iD21 (D12Cq,i)

T

⋆ ⋆ AF,iX3 + (⋆) BH,iD21 X3(C1,i +D12Fi)
T

⋆ ⋆ ⋆ −γI (D11 +D12Dq,iD21)
T

⋆ ⋆ ⋆ ⋆ −γI



< 0 (22)

Dcℓ(ρ) =

np∑

i=1

αi(ρ)(D11,i +D12Dk,iD21).

Next, apply the congruence transformation P =
diag(I, Ti, I, I, I) in the BRL inequality




XcℓAcℓ +AT
cℓXcℓ XcℓBcℓ CT

cℓ

BT
cℓXcℓ −γI DT

cℓ

Ccℓ Dcℓ −γI


 < 0, (23)

With the previous closed-loop matrices and defining
X2,i = T T

i Y2Ti > 0 and X3 = Y −1
3 , equation (23) be-

comes the matrix inequality (22) where ⋆ represents the
matrix symmetric elements. 2

Note that matrices Bq,i and Cq,i depend on the gainsHi

and Fi, respectively, and both are also affected by the
transformation Ti. Therefore, this approach produces a
non-convex problem when finding these variables simul-
taneously. Nevertheless, note that the I/O behavior at
all vertices is unaffected by the particular selection of
Hi and Fi, based on the Youla parametrization results.
Therefore, it is sensible to replace the matrices obtained
from the stabilization problem in Section 3.1. As a con-
sequence the problem can be transformed into two con-
vex ones.

(1) Given the controllers Ki(s), find X1, X3 and the
np variables Vi and Wi satisfying (9) and (11), and

compute Fi = ViX
−1
3 and Hi = X−1

1 Wi (i ∈ Inp).
(2) Assign the previous computed Fi and Hi in the np

LMIs (22) and find X1, {X2,i, i ∈ Inp} and X3.

Once {X2,i, i ∈ Inp} are obtained, the np similarity
transformations Ti can be computed and then the gain-
scheduled controller is given by (12)-(15). This controller
guarantees a performance level γ at any operating point,
under the restriction that all local vertex controllers are
recovered.

In terms of computational cost, the np LMIs (22) should
be solved for variables X1 = XT

1 ∈ Rn×n, X3 = XT
3 ∈

Rn×n and np variablesX2,i = XT
2,i ∈ Rnq×nq . Previously

the np variables (Fi, Hi) should be obtained from LMIs
(9) and (11).

4 Example

A simple missile autopilot example is used to illustrate
the procedure (Gahinet, Nemirovski, Laub & Chilali,
1995). The LPV plant has two states (six states when it
is augmented with weights) and depends affinely on the
parameter ρ ranging in P = [0.5, 4.0] × [10, 106]. Due
to the affine dependency P was described by its four
vertices V1 = {(0.5, 10), (4.0, 10), (0.5, 106), (4.0, 106)}.
At each vertex, an LTI controller was designed using
standard H∞ tools. With these controllers and the sys-
tem matrices of the plant at the four vertices, the gain
matrices {(Fi, Hi) i ∈ Inp} were computed by solving
the LMIs (9) and (11). The similarity transformations
needed to construct the gain scheduled controller (5)
were obtained from the LMIs (10) (Theorem 3.2) in the
case of the stability preserving controller and from the
LMIs (22) in the case of the controller designed for a per-
formance level γ (Theorem 3.3). We have denoted each
controller as Kqs(ρ) and Kperf(ρ), respectively.

In Figure 2, it can be observed the acceleration η when
the closed loop system with several controllers is excited
with a unitary step reference and the scheduling vari-
able remain constant at the vertex ρ1. The square marks
correspond to local controllerK1(s) and the solid line to
the gain-scheduled controller Kperf(ρ1). The coincident
responses confirm that the interpolation scheme recov-
ers the local controller at the vertices. In this figure, the
response of an LPV controller computed with the proce-
dure of Apkarian et al. (1995) can also observed (dashed
line). In this particular example, only slight differences
can be noted between the local designed controller and
the LPV controller which is computed for the entire op-
erating range. In general however, noticeable differences
are expected.

0 0.1 0.2 0.3 0.4 0.5
−1

−0.5

0

0.5

Time (s)

η
(m

/
s2
)

Figure 2. Comparison between the gain scheduled controller
(solid line), an LPV controller (dashed line) and the local
controller (square marks) at the vertex ρ1

Figure 3 shows the response when the previous closed
loop systems are excited with a step reference of ampli-
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tude 0.5 m/s
2
during a parameter trajectory depicted

in Figure 3.b. The response of the closed loop system
with Kqs(ρ) is indicated with dashed line and the re-
sponse corresponding to Kperf(ρ) with solid line. With
the aim of comparison, the response of the LPV con-
troller (dashed and dotted line) is also included. The step
occurs at t = 0.5 s when the parameter is at an interme-
diate point ρ = (2.25, 10). The improvement in the per-
formance achieved with the application of Theorem 3.3
with respect to the only stability preserving controller
Kqs(ρ) becomes clear from observing this figure. The in-
finity norm of the closed loop system plus weights at the
point ρ = (2.25, 10) is 211 in case of Kqs(ρ), 2.18 in case
ofKperf(ρ) and 0.46 in the case of LPV controller. As ex-
pected, the performance achieved by the LPV controller
is better thanKperf(ρ). The LPV scheme aims to achieve
a uniform performance in the entire operating envelope.
In contrast, the proposed interpolation is intended for
those cases where the system remains at the operating
points most of the time and the transitions from one
point to another rarely occur. On the other hand, no-
tice that the option of simple linear interpolation with-
out changing the realizations of the vertex controllers is
unstable at ρ = (2.25, 10).

−0.5

0

0.5

0 0.5 1 1.5
0

1

2

3

4

Time (s)

a
)
η
(m

/
s2
)

b
)
ρ
1

Figure 3. a) Step responses of the closed loop system with the
controller Kqs (dashed line), with Kperf (solid line) and with
LPV controller (dashed and dotted line) during a parameter
trajectory ρ2 = 10 and ρ1(t) in b)

5 Conclusions

A set of LMIs has been presented which modifies the
realizations of a group of LTI designs in order to pro-
duce a gain-scheduled controller with quadratic stability
and performance guarantees at intermediate interpola-
tion points. The quadratic stability problem results in
a convex optimization procedure and the performance
guarantees require solving two consecutive convex prob-
lems using Youla parametrization arguments, in order to
achieve the best performance in the intermediate points.
A limitation on the global performance is the use of
a block-diagonal Lyapunov function during the realiza-
tions computation.
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