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Robust identification/invalidation in an LPV framework
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SUMMARY

A robust LPV identification/invalidation method is presented. Starting from a given initial
model, the proposed method modifies it and produces an LPV model consistent with the assumed
uncertainty/noise bounds and the experimental information. This procedure may complement existing
nominal LPV identification algorithms, by adding the uncertainty and noise bounds which produces
a set of models consistent with the experimental evidence. Unlike standard invalidation results, the
proposed method allows the computation of the necessary changes to the initial model in order to place
it within the consistency set. Similar to previous LPV identification procedures, the initial parameter
dependency is fixed in advance, but here a methodology to modify this dependency is presented. In
addition, all calculations are made on state space matrices which simplifies further controller design
computations. The application of the proposed method to the identification of nonlinear systems is
also discussed. Copyright c© 2002 John Wiley & Sons, Ltd.

key words: Linear parameter varying, control-oriented identification, model invalidation, robust

control.

1. INTRODUCTION

Since the introduction of new and effective synthesis techniques more than a decade ago,
linear parameter varying (LPV) systems have awoken great interest. It fits numerous design
and analysis methods used for linear time invariant (LTI) models in robust control (see [1] and
references therein). Besides, LPV models are commonly used for “covering” the description
of many nonlinear systems. However, the application of these tools in practical cases requires
methodologies capable of finding LPV models from experimental data.
Early attempts to identify LPV models which are not based on the knowledge of a nonlinear

model use linear regression algorithms, Gray Box LPV identification, plain optimization or
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even orthonormal basis functions ([2, 3, 4, 5, 6, 7]). To solve the MIMO problem, an important
area of research in the last years is the identification through subspace methods. These methods
have the clear advantage that direct state space matrices are identified by means of algebraic
computations, hence no optimization or convergence problems need to be addressed. These
methodologies have already been applied to LPV models in [8, 9], but its application is limited
by the dimension of the data matrices involved. To overcome these difficulties, alternatives
have been proposed as the use of periodic scheduling sequences ([10]), piecewise linear (PWL)
models ([11, 12]) and more recently in [13]. Furthermore in [12], the problem derived from
composing individual SISO models into a MIMO one is also addressed. A very recent overview
of this area can be found in [14]. In all these works, a nominal LPV model is obtained, but no
uncertainty description is computed nor a worst case criteria has been used.
Further steps have been taken to include model uncertainty, stating the problem in the

framework of robust identification: a deterministic, worst case, set–membership approach.
Identification through interpolation in this framework has been explored in [15]. It produces an
LPVmodel from experimental and a priori information, but with very conservative uncertainty
bounds. A subsequent invalidation step is required in order to find less conservative bounds,
in terms of uncertainty and external noise bounds ([16]).
The present paper follows the identification guidelines introduced in [15]. Basically, the idea

is to propose a general LPV model structure and to compute its system matrices such that the
model is consistent with the experimental data and the assumed uncertainty and noise bounds.
The main difference with the previous algorithm in [15] is that the nominal model and the
uncertainty and noise bounds are found in a single step, using the invalidation procedures
presented in [16, 17]. On the other hand, the proposed procedure provides the model directly
in state space form avoiding subsequent conversions from input-output descriptions ([12]). As
in any identification method where a model structure needs to be proposed, the selection of
a model structure is crucial. Hence, we introduce a systematic procedure to select the model
structure in order to find the most adequate LPV model. Another topic discussed here is the
application of the proposed method to fit a nonlinear system in an LPV model. This is a topic
of great practical importance because of the common use of LPV techniques in the control of
nonlinear processes, which is explained by means of an example.
The paper is organized as follows. Next section presents a brief background on LPV

invalidation. Section 3 introduces the problem formulation and the main results of this work.
Practical implementation issues for the basis selection are derived to the Appendix. Two
examples are presented in section 4: a simulated LPV system which illustrates in detail this
methodology, and a nonlinear system based on a Hi-Fi (high fidelity) helicopter simulator
developed in [18]. Final conclusions and future research directions end this presentation in
section 5.

2. BACKGROUND MATERIAL

This material has been extracted from [17, 16]. Consider an LPV system

G(ρ) :





xk+1 = A(ρk)xk +B1(ρk)wk +B2(ρk)uk,

zk = C1(ρk)xk +D11(ρk)wk +D12(ρk)uk

yk = C2(ρk)xk +D21(ρk)wk +D22(ρk)uk

(1)

Copyright c© 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 00:1–6
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ROBUST IDENTIFICATION/INVALIDATION IN AN LPV FRAMEWORK 3

with xk ∈ Rns , zk ∈ Rnz , yk ∈ Rny , wk ∈ Rnw , uk ∈ Rnu and ρk ∈ Rnρ . The system (1) can
also be represented by its convolution kernel {gk,i}. The latter can be truncated up to time
k = n: {g0, g1, · · · , gn} and represented by its associated Toeplitz matrix as follows:

T n
G =




g0,1 0 · · · 0
g1,2 g0,2 · · · 0
...

...
. . .

...
gn−1,n gn−2,n · · · g0,n


 . (2)

Similarly, for a given signal sequence {hk} ∈ ℓ2, its truncated version can also be represented
by its associated Toeplitz matrix:

T n
h =




h0 0 · · · 0
h1 h0 · · · 0
...

...
. . .

...
hn−1 hn−2 · · · h0


 . (3)

With the previous definitions, the uncertain LPV models depicted in Figure 1 can be
described in a matrix form as follows (the superscript n will be dropped from here on to
simplify the notation):

Tz = TG11Tw + TG12Tu,

Ty = TG21Tw + TG22Tu + Td,

Tw = T∆Tz.

(4)

The uncertainty and external signal a priori sets are defined as follows:

∆∆∆
△
= {∆ ∈ H∞ : ‖∆‖∞ ≤ δ ≤ 1}, (5)

D △
= {d ∈ Rr : ‖d‖2/m < dmax} (6)

where m is the number of samples in the sequence d. The following theorem allows us to verify
if the uncertain model (4), the uncertainty set (5) and the noise set (6) are consistent with the
experimental data. Here, vectors d,y,u and w represent their truncated versions as follows:

x =
[
xT
o · · · xT

n−1 xT
n

]T
.

Theorem 2.1. Given time-domain measurements of the input u, the output y and the time-
varying parameter ρ, the LPV model G(ρ) is not invalidated by this experimental information
if and only if there exists a vector w, such that

[
X(w) T T

w

Tw (δ−2I − T T
G11

TG11)
−1

]
> 0,

[
d2max dT

d I

]
> 0 (7)

where

d = y − TG21w − TG22u

X(w) = T T
u T T

G12
TG12Tu + T T

u T T
G12

TG11Tw + T T
w T T

G11
TG12Tu

The previous result is used to compute the lowest bounds on the uncertainty and noise,
either fixing one bound and minimizing the other, or minimizing a weighted combination of
both bounds simultaneously.

Copyright c© 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 00:1–6
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G(ρ)

∆

d

yu

w z

ρ

Figure 1. Identification/invalidation setup

3. MAIN RESULTS

3.1. Problem Statement

Consider the robust LPV control-oriented identification setup sketched in Figure 1. The
signals u represents the test input, y the output corrupted by the measurement noise d and ρ
corresponds to the time-varying parameter.
Our attention will be centered on the most common uncertainty descriptions, i.e. additive

and multiplicative representations. Therefore, G11 = 0 and for simplicity G21 = I and the
matrices associated to the input w in the model (1) become B1 = 0, D11 = 0 and D21 = I†.
The a priori error sets (uncertainty and disturbance noise) are the ones previously described
by equations (5) and (6), with ∆ ∈ Hnz×nz∞ and dk ∈ Rny .
It will be assumed that the system matrices in (1) can be expressed as



A(ρ) 0 B2(ρ)
C1(ρ) 0 D12(ρ)
C2(ρ) I D22(ρ)


 = SI(ρ) + SC(ρ) (8)

where

SI(ρ) =



A0(ρ) 0 B2,0(ρ)
C1,0(ρ) 0 D12,0(ρ)
C2,0(ρ) I D22,0(ρ)


 , (9)

SC(ρ) =
N∑

i=1

fi(ρ)




Ai 0 B2,i

C1,i 0 D12,i

C2,i 0 D22,i


 . (10)

Matrices Ai, B2,i and the set of nonlinear functions FN = {fi, i = 1, · · · , N} are fixed
beforehand and C1,i, D12,i, C2,i, D22,i are matrices to be determined.
The term SI(ρ) represents an LPV model which could have been obtained by means

of available identification algorithms or according to some a priori information based on
mathematical expressions describing the dynamic behavior of the physical process‡. On the

†This simplification has been made without loss of generality, but more general situations may also be handled,
as the case where uncertainty input and output weights are included, i.e. B1 6= 0, G21 6= I.
‡Here SI is defined as a LPV model for generality, but it can also be described by a LTI model.

Copyright c© 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 00:1–6
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ROBUST IDENTIFICATION/INVALIDATION IN AN LPV FRAMEWORK 5

other hand, SC(ρ) is a term to be determined such that the complete model is consistent
with the a priori assumptions on the uncertainty and noise bounds and with the a posteriori
experimental information.
That is, given an initial LPV model SI for which the bounds on the modelling errors have

not been stated yet, the objective is to find the term SC(ρ) that makes the model governed by
equation (8) consistent with the a priori and a posteriori information:

u =



u0

...
un


 , y =



y0
...
yn


 , ρρρ =



ρ0
...
ρn


 .

This approach has two possible interpretations. On one hand, it is a robust LPV
identification algorithm in the sense that an LPV model and uncertainty/noise bounds are
computed based on a priori and a posteriori information. The main difference with previous
robust LPV identification results ([16]) is that the nominal model and the uncertainty/noise
bounds are computed via invalidation in only one step. This provides a less conservative
set of models in general and avoids subsequent verifications. In addition, the identification
is completely addressed in a state-space context, more convenient for MIMO systems and
controller design. On the other hand, the approach can be regarded as a tool that complements
other available identification algorithms. That is, once a model is found by means of these
algorithms, the proposed procedure computes the uncertainty/noise bounds as well as the
necessary changes to achieve consistency.

3.2. Consistency and robust LPV model identification

Based on the invalidation Theorem 2.1 and the previous model definition, the following theorem
proposes an LPV identification procedure based on an initial model.

Theorem 3.1. Given time-domain sequences of the input u, the output y and the parameter
ρ, an initial model SI, Ai, B2,i and a basis of nonlinear functions FN , the LPV model (1)
is consistent with the experimental data if and only if there exists a sequence w and matrices
C1,i, D12,i, C2,i and D22,i, such that:

[
T T
u X(ρ,C1,i,D12,i)Tu T T

w

Tw δ2I

]
> 0, (11)

[
d2max [y − TG22(ρ,C2,i,D22,i)u−w]

T

[y − TG22(ρ,C2,i,D22,i)u−w] I

]
> 0 (12)

where

X(ρ,C1,i,D12,i) = T T
G12

(ρ,C1,i,D12,i)TG12(ρ,C1,i,D12,i), (13)

TG12(ρ,C1,i,D12,i) = TG12,0(ρ) +

N∑

i=1

TG12,i(ρ,C1,i,D12,i), (14)

TG22(ρ,C2,i,D22,i) = TG22,0(ρ) +

N∑

i=1

TG22,i(ρ,C2,i,D22,i). (15)

with TG21,i and TG22,i depending linearly on the unknowns C1,i, D12,i and C2,i, D22,i,
respectively.

Copyright c© 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 00:1–6
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6 F. BIANCHI, R. SÁNCHEZ-PEÑA

Proof:

Replacing the matrices (8) in the impulsive response, the Toeplitz matrices TG12 and TG22

become (14)-(15). Then, matrix inequalities (11)-(12) result from applying Theorem 2.1 to
model (1) and replacement of the perturbation d as a function of the uncertainty input w,
according to equation (12).

2

Note that because of the term

T T
G12,j

(ρ,C1,j ,D12,j)TG12,i(ρ,C1,i,D12,i) (16)

in X(ρ,C1,i,D12,i), equation (11) is a bilinear matrix inequality (BMI). These optimization
problems may result difficult to solve, but there are several available algorithms which may
work ([19]). Alternatively, it is possible to obtain a relaxed version of Theorem 3.1 by
eliminating the nonlinear term (16). In fact, if the problem (11)-(12) with X(·) replaced by

N∑

i=1

[
T T
G12,0

(ρ)TG12,i(ρ,C1,i,D12,i) + T T
G12,i

(ρ,C1,i,D12,i)TG12,0(ρ)
]
+ T T

G12,0
(ρ)TG12,0(ρ)

is feasible then the original optimization problem will also be feasible.

According to Theorem 3.1, the model obtained is consistent with both, the a priori
noise and uncertainty sets and the experimental data. This implies that the model is
inside the consistency set, and therefore the algorithmic identification procedure is known
as interpolatory. It is a well known fact that all interpolatory algorithms have a worst case
identification error which is bounded by the diameter of information D(I). Hence, these are
convergent in the sense that the worst case error vanishes as the data increases (n → ∞) and
the measurement error vanishes (dmax → 0) (see details Chap.10 in [20]). A generalization of
this concept to LPV models can also be found in [16].

The results in this section require proposing an initial model and a basis of nonlinear
functions FN . As mentioned previously, the initial model can be obtained by means of the
available identification algorithms or the mathematical expressions describing the physical
phenomena. On the other hand, the basis of functions can be selected based on physical
insight or following the procedure proposed in the Appendix. In addition, this procedure can
be used to “cover” a nonlinear system by an LPV representation in order to design a gain
scheduled controller, as illustrated in the second example.

4. EXAMPLES

Here we apply the method to two different examples. The first one illustrates the case of a pure
LPV system. The second example is a nonlinear system based on a Hi-Fi helicopter simulator
developed in [18].

Copyright c© 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 00:1–6
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ROBUST IDENTIFICATION/INVALIDATION IN AN LPV FRAMEWORK 7

4.1. Example 1

In this first example, the proposed methodology is illustrated with simulated data from the
following two-input two-output LPV system

xk+1 =

[
0 1

−(0.3 + 0.01ρ1,k) −(0.6 + 0.6ρ2,k)

]
xk +

[
1 0
0 1

]
uk,

yk =

[
ρ22,k 0

0 1

]
xk.

(17)

The system has been excited with a pulse signal at the input u and a decreasing time-varying
parameter trajectory (Figure 2) to record the “experimental data”. The following initial LPV
model has been proposed:

SI =




0 1 0 0 1 0
−0.3 −0.6 0 0 0 1
0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 1 0 0



+




0 0 0 0 0 0
−0.01 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



ρ1,k+




0 0 0 0 0 0
0 −0.6 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



ρ2,k.

(18)
The uncertainty and noise sets are defined by equations (5)-(6), with W∆ = 0.01 (i.e., 1%
of relative uncertainty). For a clearer result interpretation, measurement noise has not been
included in this stage. In this circumstance, by adding enough nonlinear terms in SC , the
algorithm should find the matrices C1,i, D12,i, C2,i, D22,i that achieve a perfect fit with noise
and uncertain bounds close to zero.

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

ρ

Samples

Figure 2. Parameter trajectory corresponding to Example 1

In order to evaluate the effectiveness of the algorithm, several basis of functions have been
tested. The results obtained in each case are summarized in Table I. In the second and third
columns, the uncertainty and noise bounds are listed, respectively. These results indicate that
as more nonlinear terms are included in the functions basis, the bounds decrease to zero and
thus the model responses become closer to the “experimental data”. In particular, it can be
observed that when the basis of functions include all terms present in the real model, the
algorithm, in the case of absence of noise, is capable of finding a model that perfectly matches

Copyright c© 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 00:1–6
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8 F. BIANCHI, R. SÁNCHEZ-PEÑA

the real one. In fact, the computed nonlinear terms are:

SC =




0 0 0
C1,1 0 D12,1

C2,1 0 D22,1


 ρ1,kρ2,k +




0 0 0
C1,2 0 D12,2

C2,2 0 D22,2


 ρ21,k +




0 0 0
C1,3 0 D12,3

C2,3 0 D22,3


 ρ22,k. (19)

with

C1,1 = C2,1 =

[
0.0000 0.0001
0.0001 0.0001

]
D12,1 = D22,1 =

[
−0.0000 0.0000
−0.0009 −0.0041

]

C1,2 = C2,2 =

[
0.0000 0.0001
0.0001 0.0001

]
D12,2 = D22,2 =

[
−0.0000 −0.0000
−0.0004 −0.0053

]

C1,3 = C2,3 =

[
1.0000 0.0002
0.0001 0.0001

]
D12,3 = D22,3 =

[
−0.0000 −0.0000
−0.0005 0.0122

]

This shows that the algorithm has found a model really close to the actual system. Similar
conclusions can be drawn from Figure 3, where the step responses of each model subject to
the parameter trajectory shown in Figure 2 are displayed. It can be seen that the responses of
the system and model (iv) are coincident.

Model δ dmax

(i) Affine LPV 0.217 0.505
(ii) LPV with terms ρ1, ρ2, ρ1ρ2 0.238 0.472
(iii) LPV with terms ρ1, ρ2, ρ1ρ2, ρ

2
1 0.217 0.468

(iv) LPV with terms ρ1, ρ2, ρ1ρ2, ρ
2
1, ρ

2
2 0.000 0.000

Table I. Uncertainty and noise bounds for several models in Example 1 (in absence of noise)

With the aim of checking the algorithm in a less ideal case, the same “experiment” was
repeated with the measurement output corrupted by white noise (0, 0.1). The results obtained
are listed in Table II. It can be noted that although it is not possible to achieve a perfect fit
as previously, the results show a similar trend to the values in Table I. In this case, model (iv)
achieves the lowest bounds and results the best representation of the dynamic behavior of the
system.

Model δ dmax

(i) Affine LPV 0.308 0.627
(ii) LPV with terms ρ1, ρ2, ρ1ρ2 0.654 0.583
(iii) LPV with terms ρ1, ρ2, ρ1ρ2, ρ

2
1 0.438 0.565

(iv) LPV with terms ρ1, ρ2, ρ1ρ2, ρ
2
1, ρ

2
2 0.437 0.308

Table II. Noise and uncertainty bounds for several models in Example 1 (with noise)

4.2. Example 2

In the second example, we investigate the application of Theorem 3.1 to nonlinear systems.
With this aim, consider a nonlinear system linearized around a trajectory defined by an input

Copyright c© 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 00:1–6
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Figure 3. Step response of the several model in Table I

u∗ and the corresponding values of the states x∗. Assuming that x∗ is a one-to-one function
of u∗, we can model the nonlinear system as

x̂k+1 = A(u∗
k)x̂k +B2(u

∗
k)ûk,

zk = C1(u
∗
k)xk +D12(u

∗
k)ûk

yk = C2(u
∗
k)x̂k + wk +D22(u

∗
k)ûk +Φ(u∗

k)

(20)

where x̂ = x−x∗ and û = u−u∗. Basically, model (20) fits the LPV representation (1) except
for the term Φ(u∗

k). This shows the main difference between LPV models and nonlinear ones,
the latter having equilibrium points different from the origin. Therefore, the identification
methodology presented previously can be applied to nonlinear systems of the form (20) which
generalizes model (1), with a small modification.
In this second example, a Hi-Fi simulation of a 6-DOF model of an autonomous helicopter

([18]) is analyzed. This system is described by complex nonlinear expressions and presents
an open-loop unstable behavior. The model has eleven states: Euler angles, angular velocities
and accelerations, and the angles describing the orientation of the main rotor. In order to
simplify the data recollection, an LQR controller was included to stabilize the system. In this
circumstances, the system was excited by the reference angles and only the Euler angles were
measured. Therefore, the resulting system has three inputs and three outputs. The model in
this case has been parameterized by the input u∗. The nonlinear model information was not
used in any circumstance, only the result of the simulated “experiments” performed on the
simulation. As in the previous example, the simulated output was corrupted by zero mean
white noise and variance 0.5.
The system was excited by u∗ with the signal shown in Figure 4 plus a random signal û of

zero mean value. The initial model has been computed by means of PWL identification ([11]).
In the first step, the system is excited by a square wave, which forces the operation to the

Copyright c© 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 00:1–6
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10 F. BIANCHI, R. SÁNCHEZ-PEÑA

limits of the parameter space, thus identifying LTI models to construct a first LPV model.
The second portion of u∗ allows the computation of the nonlinear gain Φ(·), while the input
of the LPV model is zero (û ≡ 0). Finally, the last section of u∗ is used to test the proposed
LPV model for invalidation.

−0.2

−0.1

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2

0 100 200 300 400 500 600 700 800

−0.4

−0.2

0

0.2

0.4

0.6

u
∗ 1

u
∗ 2

u
∗ 3

Bi
as

inp
ut

Identification input Va
l. i

np
ut

Times (s)

Figure 4. Parameter sequence used to excite the system in Example 2

Since the model is parameterized by u∗, the nonlinear gain Φ(·) should also be determined
before checking the invalidation of any LPV model. This nonlinear gain was computed by
means of a polynomial fitting, which results in the following functions:

Φ(u∗) =



0.167− 0.881u∗

2u
∗
3

0.016− 0.757u∗
3

0.010− 0.940u∗
3


 .

In Table III, the uncertainty and noise bounds obtained with several basis of functions are
listed. As in the previous example, Ai and B2,i have been set to 0. These results indicate
that the inclusion of the multiaffine term u∗

1u
∗
2 in SC is useful to reduce the uncertainty and

noise bounds, specially the first one. It can also be observed that the inclusion of additional
multiaffine terms does not improve the model fit. The first test produces an affine LPV model,
which is more practical for further controller design. If a lower disturbance bound is sought, the
model (ii) is a better option at the expense of a more complex model. On the other hand, the
results in the last row in Table III show that the invalidation results are almost identical when
simplifying the model by eliminating the parameter u∗

3. As a conclusion, the results indicate
that an affine LPV model is good enough to explain the data, depending on the desired noise
bound.
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Model δ dmax

(i) Affine LPV 0.992 0.432
(ii) LPV with terms u∗

1, u
∗
2, u

∗
3, u

∗
1u

∗
2 0.214 0.370

(iii) LPV with terms u∗
1, u

∗
2, u

∗
3, u

∗
1u

∗
2, u

∗
1u

∗
3 0.214 0.370

(iv) LPV with terms u∗
1, u

∗
2, u

∗
1u

∗
2 0.221 0.392

Table III. Noise and uncertainty bounds for several models in Example 2

Figure 5 shows the responses of the system and the model (ii) to a series of consecutive
doublet signals in each Euler angle. Parameter trajectory u∗ is the same used in the invalidation
stage in Figure 4. In this case, the response of the model does not perfectly match the response
of the system, but the observed differences are within the computed uncertainty and noise
bounds. Note that the use of norm-2 criteria permits local deviations and then a typical
response convergence like those observed in other identification methods is rather unlikely.
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Figure 5. Responses of the real model (black lines) and the model (ii) (gray lines) in Example 2

Note that the resulting model is not invalidated only for trajectories as fast as the signal in
Figure 4, which therefore provides a consistent bound on the parameter rate. This last issue
can be useful for further controller designs applied to this model that use this information [21].
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5. CONCLUSIONS

A robust LPV identification method has been presented, based on invalidation concepts. The
methodology is able to compute a model consistent with the uncertainty/noise bounds and
a given model structure. A procedure that gradually increase the complexity of the model is
discussed in order to help in the selection of the model structure. For fixed uncertainty and
noise bounds and depending on the system under test, the LPV model could have constant
parameters, i.e. LTI, affine parameter dependency, or more complex parameter dependency,
i.e. multilinear, quadratic, etc., in order to make the model consistent with the experiment.
Otherwise, increasing the uncertainty bound may simplify the parameter dependency of the
model in order to use simpler control design methods, e.g. affine LPV models. Of course
the controller synthesis simplification has a cost: the resulting performance of the closed loop
system will in general be lower. The application to nonlinear systems with the aim of designing
gain scheduling controllers has also been discussed.
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4. Tóth R, Heuberger P, den Hof PV. Optimal pole selection for LPV system identificaiton with OBFs, a

clustering approach. 14th IFAC Symposium on System Identification, Newcastle, Australia, 2006; 356–361.
5. Lee L, Poolla K. Identification of linear parameter-varying systems via LFTs. Proceedings of the 35th

IEEE Decision and Control, vol. 2, 1996; 1545–1550, doi:10.1109/CDC.1996.572742.
6. Mazzaro MC, Movsichoff B, Sánchez Peña RS. Robust identification of linear parameter varying systems.

Proceedings of the 1999 American Control Conference, 1999; 2282–2284.
7. Salcedo J, Mart́ınez M. Identificación de modelos LPV para el Control de Sistemas Nolineales. RIAI (in

spanish) 2006; 3(3):92–107.
8. Verdult V, Verhaegen M. Subspace identification of multivariable LPV systems. Automatica 2002; 38:805–

814.
9. Verdult V, Verhaegen M. Kernel methods for subspace identification of multivariable LPV and bilinear

systems. Automatica 2005; 41:1557–1565.
10. Felici F, vanWingerden JW, Verhaegen M. Subspace identification of MIMO LPV systems using a periodic

scheduling sequence. Automatica 2007; 43:1684–1697.
11. Verdult V, Verhaegen M. Subspace identification of piecewise linear systems. Proceedings on the 43rd

Conference on Decision and Control, Bahamas, 2004; 3838–3843.
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APPENDIX

Practical implementation issues: selection of the basis of functions

A simple methodology to select the basis of functions FN in those cases where the use of
physical insight is not possible is described next. Basically, the idea is to apply Theorem 3.1
iteratively in order to find an adequate basis of functions. Given the initial nominal model
as well as external noise and uncertainty sets, we propose a basis of functions and check
consistency with Theorem 3.1. If the nominal LPV model obtained by adding the term SC(ρ)
is not consistent, then new terms are added to the basis and again consistency is tested. The
procedure continues until a model that does not invalidate the experimental information is
obtained. This iterative methodology allows to increase gradually the complexity of the model
only when necessary.
A natural choice is the gradual selection of components from the basis of polynomial

functions of ρk =
[
ρ1,k · · · ρnρ,k

]T ∈ Rnρ . The iterative selection would be as follows:

F1 = {1} (LTI)
F2 = {1, ρ1} (affine LPV)
... =

... ” ”
Fnρ+1 = {1, ρ1, · · · ρnρ} (affine LPV)
Fnρ+2 = {1, ρ1, · · · , ρnρ , ρ1ρ2 } (multilinear LPV)

... =
...

...
Fnρ+nρ! = {1, ρ1, · · · , ρnρ , ρ1ρ2 , ρ1ρ3 , · · · , ρ1 · · · ρnρ} (multilinear LPV)

... =
...

...

Finally, the methodology can be summarized in the following algorithm.

Test the consistency of the initial model SI(ρ) against the experimental measurements {u,y}
and the assumed uncertainty/noise sets using Theorem 2.1.
if the model is not invalidated then
The dynamic behavior of the system can be covered by the initial model SI(ρk) and the
uncertainty/noise bounds, and the procedure ends.

else
Set N = 1 in (10), fix (A1, B2,1) and compute a new LPV model according to equation
(8) with the use of Theorem 3.1.
while the LPV model is not found do
Increase N and define new pairs (AN , B2,N), and apply Theorem 3.1 to find a new LPV
model.

end while
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The dynamic behavior of the system can be covered by the model SI(ρ) + SC(ρ) and the
uncertainty/noise bounds, and the procedure ends.

end if

In order to investigate if there exists a simpler model consistent with the experimental data,
we can gradually eliminate parameters in the resulting model and check its consistency.
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