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A novel design procedure for switched LPV controller is proposed. The new procedure, based on the Youla
parameterisation ideas, decomposes the controller design into two steps. One focuses on ensuring global stability
and the other on fulfilling the local performance specifications. This scheme allows the design of each local
controller independently of each other, which may achieve higher performance without compromising the global
stability and also simplifies the synthesis and the implementation of the local controllers. Any standard LPV
synthesis procedure can be used to design these controllers. On the other hand, the stability during switching
is ensured with convex constraints and no restrictions are imposed on the switching among controllers. The
use of the proposed procedure is illustrated with an active magnetic bearing example.

Keywords: Switched linear parameter varying systems; linear parameter varying systems; Youla
parameterisation; linear matrix inequalities; active magnetic bearing systems

1 Introduction

Since the appearance of the first synthesis results (Becker and Packard 1994, Apkarian et al.
1995, Wu et al. 1996, Apkarian and Adams 1998), linear parameter varying (LPV) tools have
gradually replaced the traditional gain scheduling techniques. This new concept provides not only
a formal framework ensuring stability and performance but also a systematic design procedure.
To design the global control strategy, it is sufficient to solve only one optimisation problem
with LMI constraints. The gain scheduling is now implemented without resorting to complex
ad-hoc algorithms because the synthesis procedure itself provides the interpolation formula.
Nevertheless, the LPV formulation presents certain limitations. The optimisation problem in
systems with large number of parameters demands a prohibitive computational effort with the
current LMI algorithms (Lee 1997). On the other hand, a single LPV controller may not be
effective in cases of plants with drastic dynamic changes or when highly demanding specifications
must be fulfilled only in certain sectors of the parameter space. Usually, in these situations, the
LPV synthesis focuses on the global behaviour at the expense of sacrificing the local performance.
Probably, the first attempt to overcome these limitations can be found in (Lee 1997). The

authors propose to divide the parameter space into overlapped subsets and to design one LPV
controller for each subset. The global strategy is then constructed by interpolating the local con-
trollers. A different approach is suggested in (Wu 2001, Lu and Wu 2004, Lu et al. 2006) putting
the problem in the context of the recently introduced switched LPV systems (Lim and Chan
2003). In this context, the synthesis procedure differs from the traditional LPV techniques in the
search for piecewise or multiple parameter-dependent Lyapunov functions. However, although
these approaches put more emphasis on the local performance, the designs are still connected
by a global stability condition that limits the maximum performance achieved.
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In this paper, we propose a different approach to the synthesis problem of switched LPV
controllers partly inspired by the LTI works (Blanchini et al. 2009, Hespanha and Morse 2002).
Based on the separation principle of the Youla parameterisation, the controller design is decom-
posed into two steps, one focused on ensuring global stability and the other on achieving the
desirable performance in each subset. The appeal of this new scheme is that each local controller
can be designed independently from the other subset. This feature leads to higher performance
designs without compromising the global stability, but it also makes more tractable the local con-
troller synthesis and simplifies its implementation. The global stability is guaranteed by convex
constraints with no restrictions imposed on the switching among controllers.
The paper is organised as follows. Section 2 provides a brief introduction on switched LPV sys-

tems. Section 3 introduces the problem formulation and the novel design procedure for switched
LPV controllers. Some implementation aspects are discussed at the end of this section. In Sec-
tion 4, the application of the new procedure is illustrated with an active magnetic bearing
example. Finally, Section 5 summarizes our conclusions.

Notation: R is the set of real numbers and Rn×m the set of real matrices of n × m. For a
symmetric matrix H ∈ Rn×n, H > 0 (H < 0) denotes positive (negative) definite and H ≥ 0
(H ≤ 0) represents a positive (negative) semi-definite matrix. Given G a 2× 2 block-partitioned
matrix and a matrix Q such that det(I −G22Q) 6= 0, the lower linear fractional transformation

is defined as Fl (G,Q)
△
= G11 +G12Q(I −G22Q)−1G21. For matrices H1,H2, . . . ,Hn,

diag(H1,H2, . . . ,Hn) =




H1 0 · · · 0
0 H2 · · · 0
...

...
. . .

...
0 0 · · · Hn


 .

2 Switched LPV systems

In this section, we present a brief introduction on switched LPV systems for a better under-
standing of the contributions. A more complete discussion can be found in (Lu 2004).
A switched LPV system depends on a scheduling parameter ρ, but the set P ⊂ Rnρ where

the parameter ranges is divided by means of a set of switching surfaces Sij into closed subsets
{Pi}i∈Zn

such that P =
⋃Pi, where Zn = {1, 2, . . . , n}. The subsets can be either overlapped or

not, and in this last case Sij = Sji.
The system dynamics in each subset is given by

Gcl,i(ρ) :

{
ẋcl = Acl,i(ρ)xcl +Bcl,i(ρ)w,

z = Ccl,i(ρ)xcl +Dcl,i(ρ)w,
∀ ρ ∈ Pi (1)

where xcl ∈ Rnx is the state, w ∈ Rnw is the disturbance, and z ∈ Rnz is the controlled signal.
The evolution of the index i describes a piecewise constant function σ(t) taking values in Zn.
This switching signal indicates the active Gcl,i(ρ) system at any time and permits us to express
the dynamic behavior as

Gcl,σ(ρ) :

{
ẋcl = Acl,σ(ρ)xcl +Bcl,σ(ρ)w,

z = Ccl,σ(ρ)xcl +Dcl,σ(ρ)w,
∀ ρ ∈ P. (2)

The switching logic imposes the change of system depending on the parameter value. Therefore,
it also states the set of switching signals and the stability characteristics of the switched system.
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Under arbitrary switching signals, the proof of exponential stability requires finding a common
Lyapunov function Vσ(xcl, ρ) = xTclXcl(ρ)xcl such that

Xcl(ρ)Acl,i(ρ) +ATcl,i(ρ)Xcl(ρ) + Ẋcl(ρ) < 0, ∀ ρ ∈ Pi,∀ i ∈ Zn (3)

where Ẋcl(ρ) = dXcl(ρ)/dt and νl ≤ ρ̇l ≤ νl for l = 1, 2, . . . , nρ.
This strong condition can be relaxed by limiting the set of switching signal with particular

logics like hysteresis or average dwell time (Lu and Wu 2004). With a smaller set of switching
signals, it is possible to employ piecewise or multiple Lyapunov functions. Nevertheless, these
functions are not completely independent of each other. The functions must also satisfy addi-
tional constraints in the switching surfaces in order to guarantee global stability (Lu and Wu
2004, Lu et al. 2006).

3 Switched LPV control based on the Youla parameterisation

3.1 Problem statement

Consider an open-loop LPV system described by

G(ρ) :





ẋ = A(ρ)x+B1(ρ)w +B2(ρ)u,

z = C1(ρ)x+D11(ρ)w +D12(ρ)u,

y = C2(ρ)x+D21(ρ)w,

(4)

where x ∈ Rns is the state, u ∈ Rnu is the control input and y ∈ Rny is the measured output. The
system matrices are continuous and bounded functions of a parameter ρ measurable in real-time.
It is assumed that ρ takes values in a compact set P ⊂ Rnρ and no bounds are imposed on the
parameter rates. As usual, the pairs (A(ρ), B2(ρ)) and (A(ρ), C2(ρ)) are assumed quadratically
stabilisable and detectable, respectively (Wu et al. 1996).
The parameter set P is divided into a finite number of closed subsets {Pi}i∈Zn

with P =
⋃Pi.

These subsets are considered non-overlapped, i.e. Sij = Sji. The objective is to formulate a
methodology to design a family of n LPV controllers

Ki(ρ) :

{
ẋK = AK,i(ρ)xK +BK,i(ρ)y,

u = CK,i(ρ)xK +DK,i(ρ)y,
i ∈ Zn (5)

with xK ∈ Rnk . Each controller must fulfil the performance specifications in the correspond-
ing subset Pi whereas stability is guaranteed during the controller switching. Notice that the
resulting closed loop system fits the switched LPV system definition in (2).
The partition of the parameter range P provides additional flexibility during the controller

design. For example, in cases of LPV plants with substantial dynamic changes, a suitable parti-
tion of P may produce a higher performance controller and even it may be decisive for finding
a solution. On the other hand, in situations with a considerable number of parameters, a clever
subdivision of the parameter envelope can produce more tractable problems that would require
less computational efforts (Lee 1997).

3.2 Switched LPV controller design

Synthesis procedures for the previous problem have been proposed in (Wu 2001, Lu and Wu
2004, Lu et al. 2006). These procedures basically involve satisfying the set of LMI conditions
used in the single controller case for each region plus a new set of constraints that the Lyapunov
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Figure 1. Proposed switched LPV control structure

functions must fulfil in the switching surfaces. In general, these constraints are nonconvex due
to the fact that these synthesis procedures address the stability and performance simultane-
ously. Furthermore, the n LMI sets must be solved simultaneously which may result in a high
demanding computational problem.
We propose a different approach based on the Youla parameterisation ideas. The new control

scheme can be seen in Figure 1, where

M(ρ) :





ẋM = (A(ρ) +B2(ρ)F (ρ) + L(ρ)C2(ρ))xM − L(ρ)y +B2(ρ)v,

u = F (ρ)xM + v,

h = −C2(ρ)xM + y,

and

Qσ(ρ) :

{
ẋQ = AQ,σ(ρ)xQ +BQ,σ(ρ)h,

v = CQ,σ(ρ)xQ +DQ,σ(ρ)h,
(6)

is any stable switched LPV system. As will be shown next, this control structure presents similar
stability properties to other Youla parameterisations. That is, the stability of

J(ρ) = Fl (G(ρ),M(ρ))

is not affected by the inclusion of any stable switched LPV system Qσ(ρ). This property allows
the decomposition of the controller design into two steps. Firstly, a pre-compensator M(ρ) is
found in order to guarantee stability in the entire operating range P. Then in the subsequent
step, the parameters Qi(ρ) for achieving the desirable performance in each subset are designed.
Observe that in this control scheme only Qσ(ρ) is a switched LPV system.
To formalise the previous ideas, the exponential stability of the switched closed loop system

Gcl,σ(ρ) = Fl (J(ρ), Qσ(ρ))

needs to be proved. With this aim, a matrix function Xcl > 0 such that

XclAcl,σ(ρ) +ATcl,σ(ρ)Xcl < 0 (7)

for all ρ ∈ P must be found (Lu and Wu 2004) 1.

1The Lyapunov function is considered parameter independent because no bounds are assumed on the parameter rates.
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After some system manipulations and a similarity transformation, it can be shown that

Acl,σ(ρ) =



A(ρ) +B2(ρ)F (ρ) B2(ρ)CQ,σ(ρ) [B2(ρ)F (ρ) −B2(ρ)DQ,σ(ρ)C2(ρ)]

0 AQ,σ(ρ) −BQ,σ(ρ)C2(ρ)
0 0 A(ρ) + L(ρ)C2(ρ)




(see e.g. (Xie and Eisaka 2004)). According to Lemma A.1 (see Appendix), due to the triangular
structure of Acl,σ(ρ), if there exist three positive definite matrices Y1, XQ and X2 such that

Y1 (A(ρ) +B2(ρ)F (ρ)) + (A(ρ) +B2(ρ)F (ρ))
T Y1 < 0, (8)

X2 (A(ρ) + L(ρ)C2(ρ)) + (A(ρ) + L(ρ)C2(ρ))
T X2 < 0, (9)

for all ρ ∈ P and

XQAQ,i(ρ) +AQ,i(ρ)
TXQ < 0, (10)

for all ρ ∈ Pi and i ∈ Zn, the constraint (7) is satisfied with Xcl = diag(Y1,XQ,X2).

The simple change of variables Y1 = X−1
1 , V (ρ) = F (ρ)X1 and W (ρ) = X2L(ρ) turns (8) and

(9) into the following convex constraints

A(ρ)X1 +B2(ρ)V (ρ) + (A(ρ)X1 +B2(ρ)V (ρ))T < 0, (11)

X2A(ρ) +W (ρ)C2(ρ) + (X2A(ρ) +W (ρ)C2(ρ))
T < 0, (12)

for all ρ ∈ P. Notice that the plant (4) always satisfies these LMI constraints since by hypothesis
it is quadratically stabilisable and detectable (Wu et al. 1996).
On the other hand, there is no need to compute the parameters Qi(ρ)’s simultaneously to

fulfil the condition (10). Actually, the LMI in (10) is held automatically if each Qi(ρ) is chosen
quadratically stable ∀ρ ∈ Pi, a condition that it must also fulfil to preserve stability in the subset
Pi. This fact is a consequence of Lemma A.2 (see Appendix) which, using similar arguments to
those introduced by Hespanha and Morse (2002), proves that it is always possible to find state
transformations Ti such that the switched LPV system associated to

Qi(ρ) :

{
ẋQ = TiAQ,i(ρ)T

−1
i xQ + TiBQ,i(ρ)h,

v = CQ,i(ρ)T
−1
i xQ +DQ,i(ρ)h,

(13)

is exponentially stable. Therefore, each Qi(ρ) can be designed independently of the other ones
and thus the performance achieved in each Pi is not affected by the Qi(ρ) corresponding to other
subsets.
Each parameter Qi(ρ) can be designed by applying any standard LPV synthesis procedure to

the plant

J(ρ) :





ẋJ = AJ(ρ)xJ +BJ1(ρ)w +BJ2(ρ)v,

z = CJ1(ρ)xJ +DJ11(ρ)w +DJ12(ρ)v,

h = CJ2(ρ)xJ +DJ21(ρ)w,

(14)
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where the values of ρ are restricted to the subset Pi during the design of Qi(ρ) and x
T
J = [xT xTM ],

AJ(ρ) =

[
A(ρ) +B2(ρ)F (ρ) B2(ρ)F (ρ)

0 A(ρ) + L(ρ)C2(ρ)

]
,

BJ1(ρ) =

[
B1(ρ)

−(B1(ρ) + L(ρ)D21(ρ))

]
,

BJ2(ρ) =

[
B2(ρ)

0

]
,

CJ1(ρ) =
[
C1(ρ)−D12(ρ)F (ρ) D12(ρ)F (ρ)

]
,

CJ2(ρ) =
[
0 −C2(ρ)

]
,

DJ11(ρ) = D11(ρ), DJ12(ρ) = D12(ρ), DJ21(ρ) = D21(ρ).

The Youla parameter Qi(ρ) is computed as a standard LPV controller valid in the subset Pi.
According to Theorem 1 in (Xie and Eisaka 2004), the structure of M(ρ) ensures that any Qi(ρ)
quadratically stabilizing J(ρ) is also quadratically stable.
The particular synthesis procedure employed in the design ofQi(ρ) depends on the performance

objectives. For example, measuring the performance as ‖z‖2 < γ‖w‖2, the LPV system Qi(ρ)
can be obtained from solving a convex optimisation problem with the following constraints

N T
Ri



RiAJ(ρ)

T +AJ(ρ)Ri RiC
T
J1(ρ) BJ1(ρ)

CJ1(ρ)Ri −γiInz
DJ11(ρ)

BT
J1(ρ) DT

J11(ρ) −γiInw


NRi

< 0 (15)

N T
Si



AJ(ρ)

TSi + SiAJ (ρ) SiBJ1(ρ) C
T
J1(ρ)

BT
J1(ρ)Si −γiInw

DT
J11(ρ)

CJ1(ρ) DJ11(ρ) −γiInz


NSi

< 0 (16)

[
Ri In
In Si

]
≥ 0 (17)

with NRi
= ker[BT

J2(ρ)D
T
J12(ρ) 0] and NSi

= ker[CJ2(ρ)DJ21(ρ) 0], and the values of ρ restricted
to the subset Pi, i ∈ Zn. Then, the system matrices of Qi(ρ) are computed from Ri and Si (see
(Wu et al. 1996, Apkarian and Adams 1998) for more details). In order to obtain the n Youla
parameters, the previous synthesis procedure must be repeated n times but there is no need to
solve them simultaneously.
Once these Youla parameters are computed, it just remains to find the state transformations

Ti to modify the realizations in order to guarantee the exponential stability of Qσ(ρ) and Gcl,σ(ρ)
(see Lemma A.2). These transformations do not depend on the parameter ρ and thus they do
not affect the stability and performance characteristics achieved during the computation of the
Qi(ρ)’s.
To sum up, the proposed design procedure reduces to the following two steps:

(1) Find two positive definite matrices X1, X2 and matrices V (ρ) and W (ρ) such that LMIs
(11) and (12) are satisfied. Then, compute F (ρ) = V (ρ)X−1

1 and L(ρ) = X−1
2 W (ρ) and

construct the pre-compensator M(ρ).
(2) Find one quadratically stable Qi(ρ) for each subset Pi such that the performance spec-

ifications are fulfilled. Each parameter Qi(ρ) can be designed by applying any standard
LPV synthesis procedure to the plant J(ρ) for all ρ ∈ Pi. Finally, compute the state
transformations Ti according to Lemma A.2.

With the parameters Qi(ρ) previously obtained, the system matrices of the controllers (5) are
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given by

AK,i(ρ) =



A(ρ) +B2(ρ)F (ρ) + L(ρ)C2(ρ)−B2(ρ)DQ,i(ρ)C2(ρ) B2(ρ)CQ,i(ρ)T

−1
i (ρ)

TiBQ,i(ρ)C2(ρ) TiAQ,i(ρ)T
−1
i (ρ)


 ,

BK,i(ρ) =

[
B2(ρ)DQ,i(ρ)− Li(ρ)

TiBQ,i(ρ)

]
,

CK,i(ρ) =
[
Fi(ρ)−DQ,i(ρ)C2(ρ) CQ,i(ρ)T

−1
i (ρ)

]
,

DK,i(ρ) = DQ,i(ρ),

with ρ ∈ Pi, i ∈ Zn. These controllers can be arbitrarily switched without affecting the stability
of Gcl,σ(ρ).
It is worth to emphasize that the particular choice of Xcl does not limit the existence of a

stabilizing M(ρ) since (8)-(10) always hold by hypothesis. On the other hand, the local perfor-
mance in each subset Pi is not affected by the particular choice of F (ρ) and L(ρ) because the
parameterisation K(ρ) = Fl (M(ρ), Q(ρ)) describes all quadratically stabilising controllers.

3.3 Implementation aspects

The most considerable difference with previous results is the decomposition of the design into
two steps in order to reduce the solution to a couple of convex optimisation conditions. By
separating the stability from the performance problem, a set of synthesis procedures that can
be solved with available tools is obtained. Another positive point of this decomposition is the
reduction of the number of variables and constraints in each optimisation problem, which allows
its application to LPV plants with more parameters.
Furthermore, the new procedure does not force the use of parameter-dependent Lyapunov

functions in each subset. Since Qi(ρ) must be quadratically stable, the parameterisation

Ki(ρ) = Fl (M(ρ), Qi(ρ))

describes only those controllers that quadratically stabilise the plant G(ρ) for all ρ ∈ Pi. There-
fore, the existence of a constant Lyapunov matrix is guaranteed after finding each Qi(ρ). As a
consequence, the online computations needed to obtain the control signal are substantially sim-
pler than the parameter-dependent versions. Note that in previous results (Wu 2001, Lu and Wu
2004, Lu et al. 2006), the use of parameter-dependent Lyapunov functions is essential, otherwise
the synthesis reduces to the single LPV controller design. Therefore, the online implementation
in these cases becomes more complex than in the procedure presented here. On the other hand,
the simplicity gained on the synthesis and on the implementation may produce a lower perfor-
mance, in cases where a larger class of Lyapunov functions is considered. Recall that in LPV
synthesis the achieved performance depends on the type of Lyapunov matrices employed (Wu
et al. 1996).
The number of states of the resulting controller may become large in cases of high order plants.

Using standard LPV synthesis algorithms to design the Qi(ρ)’s, the final order can reach 4ns.
However, the order can be lower if the plant in (4) includes stable non-controllable or non-
observable states like those added to consider performance specifications. Typically, the plant
G(ρ) includes weighting functions in order to translate the performance specifications into the
LPV synthesis format. In this circumstance, only the non quadratically stable states need to be
considered during the computation of F (ρ) and L(ρ) and thus the order of M(ρ) can be lower
than ns. In the extreme case where the plant is quadratically stable, the matrix gains F (ρ) and
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L(ρ) can be chosen equal to zero and the pre-compensator reduces to

M(ρ) :





ẋM = A(ρ)xM +B2(ρ)v,

u = v,

h = −C2(ρ)xM + y.

With this pre-compensator, in cases such as mixed sensitivity problems, it is possible to formulate
an equivalent version of J(ρ) of order ns with the only aim of computing the Qi(ρ)’s. Due to
this reformulation, the order of the parameter Qi(ρ) is ns and thus, the order of the resulting
controller is 2ns.

4 Active magnetic bearing example

In order to illustrate the proposed methodology, we analyse the control of an active magnetic
bearing (AMB) system. The example is borrowed from (Lu and Wu 2004) and a detailed de-
scription of the system can be found in (Mohamed and Busch-Vishniac 1995).
The AMB system consists of a rotor suspended by four pairs of electromagnets. The opposite

electromagnetic forces maintain the rotor levitating in the centre line allowing high rotation
speeds without mechanical contact and lubrication. The dynamic behaviour can be described,
after some simplifications, by the following LPV model

G(ρ) :

{
ẋ = A(ρ)x+Bu,

y = Cx,
(18)

where the state-space matrices are

A(ρ) =




0 0 1 0 0 0
0 0 0 1 0 0

−4c2
m 0 0 −ρJa

Jr

2c1
m 0

0 −4c2
m

ρJa

Jr
0 0 2c1

m
2d2
m 0 0 0 −d1

m 0

0 2d2
m 0 0 0 −d1

m



,

B =
1

N

[
04×2

I2

]
,

C =
[
I2 02×4

]
.

The state vector is xT =
[
lθ lψ lθ̇ lψ̇ φθ φψ

]
, the disturbance is wT =

[
fdθ fdψ

]
, and the control

action is uT =
[
eθ eψ

]
. The angles θ and ψ indicate the orientation of the rotor centre line, and

φθ and φψ denote the differential fluxes produced by the electromagnetic pairs. The disturbance
w is consequence of imbalances, modelling errors, etc. The orientation of the centre line can be
controlled by means of the differential voltages eθ and eψ applied to the electromagnet pairs. The
symbol ρ represents the rotor speed, which ranges from 350 rad/s to 1100 rad/s and is assumed
measurable in real-time. A detailed explanation of the rest of the parameters can be found in
(Mohamed and Busch-Vishniac 1995).
The system is open loop unstable therefore the first control objective is to stabilise it. The

second objective is to minimise the gap displacements caused by the disturbances with a reason-
able control effort. These control specifications are translated into the performance constraint
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Figure 2. Control scheme for the controller design

‖z‖2 < γ‖w‖2 by augmenting the plant with weights as sketched in Figure 2 where

Wy(s) =
10(s + 8)

s+ 0.001
I2, Wu(s) =

0.01(s + 100)

s+ 100000
I2,

Ww(s) = 0.001I2.

The parameter set P has been divided into two sets P1 = [315 720] and P2 = [720 1100].
Following the proposed procedure, firstly we found the matrix gains F (ρ) and L(ρ) by solving
the LMI optimization problem (11)-(12) and then the pre-compensator M(ρ) is constructed. In
this case, F (ρ) and L(ρ) can not be zero because the plant is not quadratically stable. Once the
stability is guaranteed, the parameter Qi(ρ)’s are obtained by solving two independent convex
optimisation problem given by (15)-(17). The achieved performance levels were γ1 = 3.31 and
γ2 = 3.32, respectively. By comparison, the application of traditional LPV synthesis procedures
for the whole parameter space (P = [315 1100]) gives a performance level of 6.66, a worst result
as compared with the switched option.
The simulation results in Figure 4 show the response to steps of 0.001 amplitude applied at

the disturbance inputs, whereas the parameter trajectory follows the profile shown in Figure 3.
It is worth to note the absence of glitches, even though the parameter trajectory crosses the
switching surface at 2.9 s and 6.1 s. This is due to the fact that the parameters Qi(ρ)’s are only
active during the transient and in Figure 4 the system has reached the stationary state before the
switching occurred. In this situation, only the pre-compensator focused on preserving stability
is active, which is never switched. This is another difference with previous switching strategies
where the whole controller is switched and then the glitches always arise.
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Figure 3. Parameter trajectory used in the simulations

In Figure 5 the closed loop system has been excited with persistent signals of the form

w1 = w̃ sin(ρt+ τ1),

w2 = w̃ sin(ρt+ τ2),

where τi are initial phases and w̃ = 1.3 · 10−6, which represent small imbalances. The parameter
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Figure 4. Step responses of the closed loop system under the parameter trajectory in Figure 3

trajectory corresponds to the same signal shown in Figure 3. It can be seen that due to the
persistency of the excitation the signal v is always non-zero and the effect of the controller
switching is now visible on the output signal. However, the simulation shows that the stability
is preserved and the transient due to the switching vanishes in a reasonable time.

5 Conclusions

A new synthesis procedure for switched LPV controllers has been discussed. Based on the sep-
aration principle provided by the Youla control structure, the design is divided into two steps.
Firstly, the global stabilising pre-compensator is obtained and then a set of Youla parameters
is designed to achieve the desirable performance in each subset in which the entire scheduling
parameter envelope has been partitioned. Comparing with previous results, the offline and on-
line computational procedure in the proposed control structure is less demanding, but in certain
situations may result more conservative. The controller computation is decomposed into several
convex optimisation problems with a smaller number of variables and constraints, which makes
more tractable the design for plants with large number of parameters. On the other hand, the
use of constant Lyapunov matrices in the computation of the Youla parameter simplifies the
controller online implementation. The new controller structure also exhibits a better behaviour
during the switching. Due to the fact that only the parameter Qi(ρ) switches, the presence of
glitches is now less visible.
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Appendix A: Some useful results

Some technical results used through the paper are presented in this section.

Lemma A.1: If there exist X1 > 0 and X2 > 0 such that

X1A11(ρ) +AT11(ρ)X1 <0

X2A22(ρ) +AT22(ρ)X2 <0

then there exits X > 0 such that

XA(ρ) +AT (ρ)X < 0 (A1)

where

A(ρ) =

[
A11(ρ) A12(ρ)

0 A22(ρ)

]

with A12(ρ) a bounded function of ρ ∈ P.

Proof With X = diag(αX1,X2) and using Schur complements, the condition (A1) is equivalent
to

αM(ρ) = α(X1A11(ρ) +AT11(ρ)X1) < 0 (A2)

X2A22(ρ) +AT22(ρ)X2 − αX2A12(ρ)M
−1(ρ)AT12(ρ)X2︸ ︷︷ ︸
N(ρ)

< 0 (A3)

The X2A12(ρ) is a possibly rectangular or singular matrix but a bounded function of ρ. Since
M−1(ρ) < 0, it can be stated that N(ρ) ≤ 0. Then, it is always possible to find a α > 0 such
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that (A2) and (A3) are satisfied. This proves the existence of a X such that (A1) holds. �

Lemma A.2: Given the set of LPV systems

Gi(ρ) :

{
ẋ = Ai(ρ)x+Bi(ρ)w,

z = Ci(ρ)x+Di(ρ)w,
∀ ρi ∈ Pi (A4)

If all Gi(ρ) are quadratically stable, there always exist state-space transformations Ti’s such that
the switched LPV systems formed by the Gi(ρ)’s is exponential stable under arbitrary switching.

The proof is similar to the LTI case addressed in (Hespanha and Morse 2002) and is sketched
here in order to illustrate the computation of the state-space transformations. Due to Gi(ρ) is
quadratically stable there exist constant Lyapunov matrices Xi > 0, i ∈ Zn such that Xi = STi Si.

Then, defining X = STS > 0 and Ãi(ρ) = TiAi(ρ)T
−1
i , with Ti = S−1Si, the quadratic stability

of each Gi(ρ) ensures that

XiT
−1
i Ãi(ρ)Ti + T Ti Ã

T
i (ρ)T

−1
i Xi < 0, ∀ρ ∈ Pi, ∀i ∈ Zn

which is equivalent to

XÃi(ρ) + ÃTi (ρ)X < 0, ∀ρ ∈ Pi, ∀i ∈ Zn

after applying the congruence transformation S−T
i S. Hence, the existence of a common Lyapunov

function V (x) = xTXx has been proved and thus the exponential stability of the switched
system.
Unfortunately, this result can not be extended to parameter-dependent quadratically stable

systems. This would lead to parameter-dependent state transformations which would modify the
input-output characteristics of the original LPV systems.
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