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Abstract

For a smooth integration of large wind farms into the utility grids, the individual

wind turbines must be able to achieve various power control objectives. In this context,

we focus our attention on the control of fixed–speed active stall wind turbines. This

sort of turbine includes a pitch servomechanism to induce stall on the blades, thereby

having control on the output power. In this paper we develop a methodology to

design optimal gain–scheduled pitch controllers valid for the whole operating region

of the wind turbine. The proposed solution uses concepts of linear parameter–varying

system theory. In addition to providing a formal framework for the control design,

this theory gives guarantees of stability and performance. Further, because of the

similarities with H∞ control, the tools developed for the controller design are very

familiar to the control community. The main features of the proposed controller are

assessed by means of numerical simulations obtained for realistic wind speed profiles

and power production demands.
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1 Introduction

Traditionally, the primary objective of large wind turbine control systems has been to

reduce the cost per kWh. This means the maximisation of the power production, only

limited by the rated power of the machine. At wind farm level, the control decisions have

been limited for a long time to shut down and start up the wind turbines. However, with

the operational capacity of modern wind farms being comparable to conventional power

plants and the penetration of wind energy into the electricity markets continuously rising,

the technical specifications for wind power grid connection are becoming more demanding

[1, 2, 3, 4]. Therefore, there exists at present a growing interest in reducing the impact of

wind energy on power system quality and reliability. Moreover, modern wind farms are

expected to share some of the duties currently performed by conventional power plants

such as voltage and frequency regulation, dynamic stability, etc. [2, 5, 6]. To this end,

wind farms must exhibit flexibility for the control of the active power supplied to the grid

as well as of the reactive power absorbed from or injected to the grid [7].

Currently, the dominant idea is to control the active and reactive power production by

means of a two–level control system, namely a centralised wind farm control level and a

local wind turbine control level. The aim of the centralised controller is for the wind farm

to comply with the orders of the power system operator [8, 9]. It must estimate the wind

power available in the farm and compute on–line power reference signals for each wind

turbine. On the other hand, the wind turbine controller must track its power references.

Hence, the regulation of wind farms translates into new specifications for wind turbines

operation. For instance, wind turbines can be required to regulate power at a constant

value lower than rated power (balance control), to limit power production in such a way

that a specified power reserve is always available (delta control), to limit the rate of change

of the generated power (gradient control), etc. [2, 8]. These new specifications enlarge

the conventional operating locus primarily determined to maximise the energy capture

[10, 11].

The dynamic behaviour of wind turbines strongly varies along their operating range.

Therefore, gain scheduling techniques, which are specifically developed to cope with non-

linear dynamics using tools and concepts of linear systems, have been widely applied to

the design of wind turbine control systems [12, 13, 14, 15]. The gain–scheduling problem

can be formally formulated in the context of linear parameter–varying (LPV) systems
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[16, 17]. In addition to accomplishing guarantees of stability and performance, this ap-

proach simplifies considerably the control design. Further, because of the similarities with

H∞ control, the new tools to design LPV gain–scheduled controllers are very intuitive

and familiar to the control community. Moreover, parameter and model uncertainties can

be dealt with in a straightforward fashion. In previous works, LPV controllers have been

developed for variable–speed wind turbines operating along the conventional control locus

(i.e. along the curve of maximum power capture up to rated power) [18, 19, 20, 21, 22]. In

the current paper we develop an LPV controller showing optimum performance along an

operating range enlarged to cope with the new specifications for the fixed–speed active–

stall configuration. Naturally, the expansion of the operating locus associated to the new

control objectives brings with it a wider variety of dynamic behaviours. This strengthens

the need for controllers capable of adapting themselves to the dynamic changes experienced

by the turbine.

The paper is organised as follows. In the next section, the turbine control strategy is

discussed. Then, in section 3, the procedure to design an optimal LPV gain–scheduled

controller for the pitch servo system is presented. In section 4, the performance of the pro-

posed controller is evaluated by simulation under realistic wind speed and power reference

profiles. Finally, the last section summarises the conclusions of the work.

2 Control strategy

The active stall control method is a popular alternative to pitch regulation in the medium

to high power scale. Without the inherent complexity of variable–speed operation but at

the cost of higher mechanical stresses, it achieves a smoother power regulation at high wind

speeds. An active stall wind turbine comprises a variable–pitch wind rotor, with the pitch

angle being controlled to induce stall on the blades. The pitch mechanism allows a flat

power regulation characteristic above rated wind speed, whereas power efficiency at low

wind speeds can be improved to a certain extend. This variable–pitch wind rotor usually

drives a squirrel cage induction generator directly coupled to the AC grid (Fig. 1). That

is, the turbine works at fixed–speed except for the small slip inherent to the operation of

the induction machine. There also exists a double–speed version, where the synchronous

speed can be switched between two fixed values by reconnecting the stator windings of

the machine. Double speed operation gives improved conversion efficiency and lower noise
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at low wind speeds. Finally, there is a capacitor bank with the purpose of having some

control of reactive power.

The power Pr captured by a wind rotor of diameter 2R facing an airflow of speed V

and density ρ is

Pr =
1

2
πR2ρCP (λ, β)V

3, (1)

where CP describes the turbine aerodynamics. This power coefficient is usually written

as function of the pitch angle β and the tip–speed–ratio λ = RΩr/V , with Ωr being the

rotational speed that is almost constant in the current configuration. Coefficient CP takes

its maximum value CPmax at an optimum tip–speed–ratio λo and βo (CPmax = CP (λo, βo)).

This means that a fixed–speed wind turbine is optimally loaded only at one wind speed.

For any other wind speed, sub–optimum operation can be achieved by pitching the blades

a small angle in positive or negative direction around βo.

Fig. 2 shows the conventional control strategy of a fixed–speed active stall wind turbine.

In the top part of the figure, the control strategy is plotted on the power – wind speed

plane, whereas the bottom part of the figure depicts the corresponding power conversion

efficiency (CP ) as function of wind speed. This conventional control strategy basically

consists in capturing as much power as possible between cut–in (Vmin) and cut–off (Vmax)

wind speeds without overloading the turbine, i.e. without exceeding rated power. This

strategy can be divided into two regions having different control goals:

β−optimisation mode Below rated wind speed, the power the turbine can produce

is lower than rated. Therefore, the conventional control objective in low wind speeds

consists in capturing as much power as possible. As explained before, the coefficient CP

is maximised as much as possible by adjusting the pitch angle as function of wind speed.

This task is performed in open–loop. That is, after averaging the wind speed over a certain

period of time, the controller looks up the appropriate value of β in a look–up table [23].

When building this table, it should be kept in mind that the CP − β curves have sharp

maxima in low wind speeds whereas they are flat in high wind speeds. Therefore, the

table must contain several points in the low wind speed range to meet the optimum β

accurately [24].

Limitation mode Above rated wind speed, the power available in the wind exceeds

rated power. Therefore, the control strategy in high wind speeds consists in regulating
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the turbine at rated power, thereby avoiding overloads. This task is done in closed–loop.

The stall effect is controlled by pitching the blades. Thus, properly adjusting the pitch

angle as function of the output power error, a flat power regulation is achieved.

When the wind turbine is part of a large–scale wind farm, the control strategy may

differ from the conventional one consisting in maximizing the power production without

exceeding rated power. For instance, it may be required to regulate the turbine at a power

set–point below rated power or to track a time–varying power reference signal specified

by the centralised farm controller [25]. Now, the power optimisation and power limitation

modes of operation are not only determined by the current wind speed but also by the

power demand.

Fig. 3 shows the operating points of the turbine plotted onto the CP curve for any

feasible control strategy. The point N represents turbine operation at rated wind speed

and rated power. This is the nominal point of operation. The line IN represents the

β−optimisation mode of operation. In fact, on this line, the CP coefficient takes its

maximum achievable value for each wind speed between cut–in (I) and rated (N). On

the line NO the turbine operates at rated power between rated wind speed (N) and

cut–off wind speed (O). Therefore, the line identified by the points INO represents the

conventional control strategy. Now, if the power reference may take values between 0%

and 100% of rated, then all feasible points of operation covers the whole area delimited

by the lines IJ , JQ, IN , NO and OQ. The lines IJ and OQ are the operating loci (from

100% to 0% of rated power) at cut–in and cut–off wind speeds, respectively. Finally, the

line that joins the points J and Q is characterised by zero power production. It is clear

that the turbine operates in the β−optimisation mode just on the line IN whereas it

operates in the limitation mode on the rest of the region.

3 Linear parameter–varying gain–scheduled controller

In classical gain scheduling techniques, the nonlinear or time–varying plant is linearised

around a finite set of operating points and a linear controller is subsequently designed for

each of these linear time–invariant plants. Then, the gain–scheduled controller is obtained

from the family of linear controllers by means of a switching or interpolation algorithm.

Gain scheduling techniques have been extensively used in a wide range of applications.

However, in the absence of theoretical foundations, stability, robustness and performance
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properties of the gain–scheduled controlled system cannot be assessed from the properties

of the linear controllers family.

In the early 1990s, Shamma and Athans introduced the linear parameter–varying sys-

tems [16]. LPV models are generally obtained by reformulating a nonlinear or time–varying

system as a linear system whose dynamics depend on some time–varying exogenous pa-

rameters. In addition to providing a formal framework, the concepts of LPV systems

simplify the synthesis of gain–scheduled controllers, which can be formulated as a convex

optimisation problem with LMIs [26, 17]. The existence of efficient numerical algorithms

makes this optimisation approach very effective to solve a wide range of control problems

[27]. In LMIs-based LPV gain scheduling techniques, the controller is treated as a unique

entity, thereby simplifying the scheduling algorithm. In many aspects, the controller de-

sign follows a procedure similar to H∞ control, with the difference that the resultant

controller is now dependent on the scheduling parameters.

In this section, we present first the derivation of an LPV model for the wind tur-

bine. Then, we proceed to describe the controller setup. Finally, we provide the tools to

synthesise the LPV gain–scheduled controller.

3.1 Linear parameter–varying model

The model of a wind turbine comprises several subsystems. Namely, the drive–train

and tower dynamics, the aerodynamics, the pitch servo and the generator. The dominant

dynamics usually lie in the mechanical subsystem. Therefore, wind turbines are commonly

modelled as flexible structures undergoing exogenous torques from the wind and generator.

Drive–train model Pitch angle control has a direct impact on the aerodynamic forces

developed on the rotor. Consequently, inappropriate controllers may induce tower bend-

ing and vibrations. Fortunately, the structure dynamics can be disregarded during the

controller design process since it is outside the control loop [18]. On the contrary, a com-

plete model, i.e., a model including the structure dynamics, must be considered for the

proper assessment of controller performance. Therefore, just the first vibration mode of

the drive–train will be considered here for the formulation of the LPV model, whereas the

simulation results presented later on were obtained using a more complete model of the

mechanical subsystem.
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The dominant dynamics of the drive–train is modelled as




θ̇s

Ω̇r

Ω̇g


 =




0 1 −1

−Ks

Jr
−Bs

Jr

Bs

Jr
Ks

Jg

Bs

Jg
−Bs

Jg







θs

Ωr

Ωg


+




0

Tr
Jr

−Tg
Jg




(2)

where Tr and Tg are the exogenous torques, namely the aerodynamic torque developed on

the wind rotor and the reaction torque of the generator, respectively. The variables and

parameters of the model are listed in Table 1.

Aerodynamic model The aerodynamic torque Tr is a nonlinear function of wind speed,

rotor speed and pitch angle. It is usually expressed in the form

Tr =
1

2
ρπR3CT (λ, β)V

2, (3)

where CT (λ, β) = CP (λ, β)/λ is the torque coefficient of the wind rotor. In order to derive

an LPV model, (3) is linearised as follows 1:

T̂r = −Br(V̄ , β̄) · Ω̂r + kv(V̄ , β̄) · v + kβ(V̄ , β̄) · β̂, (4)

where the bar ( ¯ ) and hat ( ˆ ) over the variables mean ‘value at the operating point’

and ‘deviation from the operating point’, respectively. The variable v is the turbulence

component of the wind V , i.e. v = V − V̄ . The coefficient Br denotes the aerodynamic

damping intrinsic to the wind rotor, whereas the coefficients kv and kβ are the sensitivity

of the aerodynamic torque to wind turbulence and pitch angle deviations, respectively.

The expressions for these coefficients as functions of the operating point (o.p.) are

Br(V̄ , β̄) =
∂Tr
∂Ωr

∣∣∣∣
o.p.

= − T̄r
Ω̄r

(
1− ∂CP /∂λ

CP /λ

∣∣∣∣
o.p.

)
,

kv(V̄ , β̄) =
∂Tr
∂V

∣∣∣∣
o.p.

=
T̄r
V̄

(
3− ∂CP /∂λ

CP /λ

∣∣∣∣
o.p.

)
,

kβ(V̄ , β̄) =
∂Tr
∂β

∣∣∣∣
o.p.

=
T̄r
β̄

∂CP /∂β

CP /β

∣∣∣∣
o.p.

.

(5)

Fig. 4 shows how the intrinsic aerodynamic damping Br, and the torque sensitivities to

wind turbulence (kv) and pitch (kβ) of a typical active stall wind turbine vary with mean

1Note that the operating point, which is given by the intersection of the wind rotor and generator

torque—speed characteristics, is completely determined by V̄ and β̄.
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wind speed for different constant–power curves in Fig. 3. It is observed that the intrinsic

damping takes small positive values in the optimisation mode of operation. However, when

the wind turbine switches to its limitation mode of operation, the intrinsic damping falls

rapidly until reaching large negative values. This is particularly true for the conventional

control strategy (solid line). Note that large negative damping threatens the stability of

the system. The gain kv is positive and increasing in the optimisation mode. This means

that the captured power increases with wind speed and, moreover, increases more rapidly

as wind speed rises. In the power limitation mode, this gain decreases until becoming

negative when the turbine stalls. This gain gives an idea about the impact of turbulence on

the output power regulation. Finally, kβ gives a measure of control sensitivity. Naturally,

kβ = 0 during the optimisation mode since β is selected to maximise the aerodynamic

torque. This is not a problem because the pitch control loop is open in this operation

mode. In the limitation mode, kβ increases with wind speed. This means that less control

effort is needed as wind speed rises and, conversely, that there are some controllability

problems at the beginning of the limitation mode where kβ takes small values. In fact,

in this situation, fast pitch variations are needed to effectively regulate the output power

in the presence of turbulence. This poor controllability imposes some restrictions on the

achievable performance in this region.

Pitch actuator model The pitch angle of the blades is modified by a nonlinear servo

that generally rotates all the blades –or part of them– in unison. In closed loop the pitch

actuator can be modelled as a first–order dynamic system with saturation in the amplitude

and derivative of the output signal [12]. Fig. 5 shows a schematic diagram of the first–

order actuator model. The dynamic behaviour of the pitch actuator operating in its linear

region is described by the differential equation

β̇ =
1

τ
(βd − β), (6)

where β and βd are the actual and desired pitch angles, respectively.

Power regulation may demand fast and large corrections of the pitch angle, particularly

when the sensitivity kβ is low. Consequently, the bounds on the rate of change and

amplitude of the pitch angle may have appreciable effects on the power regulation features.

To reduce the risks of fatigue damage and undesirable dynamic behaviours, these limits

should not be reached during normal operation of the turbine. This restriction must be

taken into account during the control design procedure.
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Generator model As mentioned above, we disregard here the dynamics of the electri-

cal subsystem since it is much faster than the drive–train and pitch actuator dynamics.

Therefore, we describe the generator behaviour by means of its static torque–speed char-

acteristic, which can be approximated by:

Tg = Bg(Ωg − Ωs). (7)

LPV model of the wind turbine Incorporating the pitch actuator dynamics (6) to

the drive–train model (2), and replacing Tr and Tg with (4) and (7), the dynamics of the

entire wind turbine can be expressed in the form of an LPV model

G :





ẋ(t) = A(p(t))x(t) + Bv(p(t))v(t) + B(p(t))u(t)

ψ(t) = Cx(t)
(8)

where

x =
[
θ̂s Ω̂r Ω̂g β̂

]T
,

u = β̂d,

ψ = P̂g,

p =
[
V̄ β̄

]T
.

The inputs to the model are the turbulence v, which is regarded as a disturbance, and

the control action βd. The output variable is the electrical power supplied to the grid

Pg = ΩsTg. The parameter vector p is the set of variables that define the operating point

of the wind turbine.

The matrices of the model are

A(p) =




0 1 −1 0

−Ks

Jr
−Br(p) +Bs

Jr

Bs

Jr

kβ(p)

Jr
Ks

Jg

Bs

Jg
−Bs +Bg

Jg
0

0 0 0 −1

τ




,

B(p) =
[
0 0 0

1

τ

]T
,

Bv(p) =

[
0

kv(p)

Jr
0 0

]T
,

C =
[
0 0 BgΩs 0

]
,
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where the dependence of p on time is omitted for brevity.

Finally, to completely characterise the LPV model, the region P where the parameter

p lives must be specified. This region is obtained from Fig. 3 by projecting the shaded

area onto the V –β plane. This region is plotted in Fig. 6.

3.2 Controller setup

The design of LPV controllers resembles H∞ control of linear systems. The control prob-

lem is stated in terms of the minimisation of the induced norm of an input–output operator

Tzw : w → z that represents the control objectives. Consequently, the first step of the

controller design consists in identifying the input variable w –the so–called disturbance–

and a performance output z that usually includes control and controlled variables of the

system. Then, weighting functions are selected. They are generally linear transfer func-

tions stressing the performance output at the frequencies of interest. The combination of

the open–loop system and weighting functions is called augmented plant.

Fig. 7a sketches the block diagram of the control system whereas Fig. 7b shows the

corresponding augmented plant.

The wind turbulence is regarded as the disturbance to the plant, i.e. w = v. The

performance outputs are obtained by passing the control signal u = β̂d and the controlled

variable ψ = P̂g through the weighting blocks Wu(s) and We(s)M(s), respectively. Note

that the latter weighting function is factorised into two separate functions We(s) and

M(s). This is for the augmented plant to satisfy stabilizability conditions [18]. Suitable

expressions for the weighting functions are

Wu(s) = ku
s/(0.1ωu) + 1

s/(10ωu) + 1
,

We(s)M(s) = ke
s/100 + 1

s+ 0.1(1.01− pe)
,

(9)

where

pe =





0 if kβ < 0.05

1 if kβ ≥ 0.05

On the one hand, Wu(s) weights the control effort with the aim of penalizing fast pitch

angle variations. On the other hand, the matrixWe(s)M(s) stresses the importance of the

low frequency components of the power error. This performance specification is relaxed

when the sensitivity kβ is low, i.e. when the system exhibits low controllability.
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The augmented plant is an LPV system of the form

G̃ :





ẋ(t) = A(p(t))x(t) +B1(p(t))w(t) +B2u(t)

z(t) = C1x(t) +D11w(t) +D12u(t)

y(t) = C2x(t)

(10)

where the matrices in (10) are readily obtained from the LPV model of the plant (8) and

the weighting functions (9). It is immediate to show that the augmented plant is affine in

Br(p), kv(p), kβ(p) and pe(p). That is, if we define the basis functions

φ1(p(t)) = Br(p(t)),

φ2(p(t)) = kv(p(t)),

φ3(p(t)) = kβ(p(t)),

φ4(p(t)) = pe(p(t)),

then the parameter–dependent matrices A(p) and B1(p) can be expressed in the form

A(p) = A0 +
4∑

i=1

Aiφi(p), B1(p) = B1,0 +
4∑

i=1

B1,ixi(p),

where the matricesAi andB1,i are independent of p. This property is used in the following

subsection to synthesise the controller.

3.3 Controller synthesis

The controller synthesis consists in finding an LPV controller

C :





ẋc(t) = Ac(p(t))xc(t) +Bc(p(t))y(t)

u(t) = Cc(p(t))xc(t) +Dc(p(t))y(t)
(11)

such that the closed–loop system is stable and the L2–norm of z(t), ‖z(t)‖2 =:
∫∞
0 z(t)Tz(t)dt < γ for all inputs w(t) satisfying ‖w(t)‖2 < 1.

Therefore, from [17] it can be shown that the controller results from solving the fol-

lowing optimisation problem with LMIs:

minimise γ

subject to the LMIs (12) and (13),

where the meaning of the symbol ? is inferred by symmetry2:

2There currently exist various broadly available numerical algorithms to efficiently solve this sort of

inequality.
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


Ẋ+XA+ B̂C2 + (?) ? ? ?

ÂT +A+B2D̂C2 −Ẏ+AY+B2Ĉ+ (?) ? ?

(XB1)
T BT

1 −γInw ?

C1 +D12D̂C2 C1Y+D12Ĉ D11 −γInz



< 0, (12)


X I

I Y


 > 0. (13)

The optimisation variables are the Lyapunov functions X(p) and Y(p) and the set of

auxiliary controller matrices

Â(p) = Â0 +

np∑

i=1

φi(p)Âi, B̂(p) = B̂0 +

np∑

i=1

φi(p)B̂i,

Ĉ(p) = Ĉ0 +

np∑

i=1

φi(p)Ĉi, D̂(p) = D̂0 +

np∑

i=1

φi(p)D̂i.

The Lyapunov functions can be searched in the set of parameter–dependent matrix func-

tions, i.e.

X(p) = X0 +

np∑

i=1

φi(p)Xi, Y(p) = Y0

or

X(p) = X0, Y(p) = Y0 +

np∑

i=1

φi(p)Yi,

(14)

or in the set of constant matrices

X(p) = X0, Y(p) = Y0. (15)

In general, since (15) is a subset of (14), a less conservative design is expected when

parameter–dependent functions are used. However, in many cases, the improvement in

controller performance does not outweigh the larger complexity of the controller imple-

mentation algorithm. Therefore, constant Lyapunov functions are usually employed. In

this case, and with B2 and C2 being constant matrices (see (10)), the computation of the

controller matrices in (11) is reduced to a simple linear combination of constant matrices.

That is,

Ac(p) = Ac0 +

np∑

i=1

φi(p)Aci, Bc(p) = Bc0 +

np∑

i=1

φi(p)Bci,

Cc(p) = Cc0 +

np∑

i=1

φi(p)Cci, Dc(p) = Dc0 +

np∑

i=1

φi(p)Dci,
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where Aci, . . . ,Dci are constant matrices computed off–line:

Aci = N−1(Âi − B̂iC2Y0 −X0(Ai −B2D̂iC2)Y0 −X0B2Ĉi)M
−T ,

Bci = N−1(B̂i −X0B2Ĉi),

Cci = (Ĉi − D̂iC2Y0)M
−T ,

Dci = D̂i,

with M and N being derived from the factorisation problem3

I−X0Y0 = NMT .

Finally, at each sample time tk, the control action is obtained by means of the following

steps:

1. The parameter–dependent functions Ac(p), Bc(p), Cc(p) and Dc(p) are evaluated

at the measured value pk = p(tk).

2. Then, the control signal is calculated by integration of (11).

3.4 Robustness features

It is worthy to note that the proposed controller exhibits interesting robustness properties.

They are due to the constraint on the induced norm of the operator v → β̃d, as can be

shown from (2) – (4) and some block algebra manipulation. In fact, replacing Tr in (2) with

(4), it becomes clear that the operator v → P̂g differs from β̂d → P̂g only in the parameter

dependent gains kv and kβ, respectively. Therefore, if a signal is passed through the filter

kv(p)

kβ(p)
(sτ + 1)

and entered in the input β̂d of G(p), we obtain the same response that if the signal is

entered in the input v of G(p). This fact implies that imposing a constraint on the induced

norm of the operator v → β̃d is equivalent to imposing a constraint on the induced norm

of u∆ → y∆ in Fig. 8 , where

W∆(s) =
kv(p)

kβ(p)
(sτ + 1)Wu(s).

3In the case that parameter–dependent Lyapunov functions are adopted, the previous matrices as well

as the factorisation problem must be computed on–line. The guidelines for the implementation can be

found in [18].
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By the Small Gain Theorem [28], forcing an induced norm on u∆ → y∆ lower than 1,

the controller guarantees stability even in the presence of low frequency modelling errors

lower than kvku/kβ and 100% of error at frequencies higher than ωu.

Observation The design of conventional linear controllers (typically, PI controllers) ca-

pable of stabilising the system and showing satisfactory performance all over the expanded

operating region of Fig. 3 is not easy. In fact, because of the wide variety of dynamics

(see the range of values for parameters kβ, kv and Br in Fig. 4), a single linear controller

valid for the whole operating region may be too conservative. To partially cope with this

problem, the proportional gain of the PI controller can be varied with the inverse of the

input gain kβ . By this proportional gain scheduling, a less conservative design is achieved.

However, if certain robustness properties are desired over the whole operating region, the

design of the gain scheduled PI controller becomes not trivial again. On the contrary, the

proposed LPV design method provides a powerful, simple and familiar tool (that resem-

bles H∞ and uses LMI optimisation) to design controllers exhibiting optimal performance

over the whole operating region. Moreover, the controllers guarantee a given performance

index despite the presence of bounded model uncertainties.

4 Simulation results

In this section we present some results that corroborate the effectiveness of the proposed

controller. These simulations were developed using an extended model of the wind turbine

that includes also the tower bending dynamics. The realistic wind profile employed in

the simulations was generated considering the cyclic fluctuations caused by the spatial

distribution of the wind speed field. The mechanical and wind speed models are described

in detail in [18].

We considered a three–bladed 2MW wind turbine with total inertia Jr + Jg =

5.58kgm2/s2. The parameters of the weighting functions were tuned as follows: ke = 10,

ku = 0.25 and ωu = 10. We evaluated the use of parameter–dependent and constant

Lyapunov functions. In both cases we obtained similar performance levels γ. So, we

adopted constant Lyapunov matrices and computed the controller following the procedure

described in the previous section.
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Power balance and gradient control Fig. 9 shows the response of the wind turbine to

a wind speed profile above rated wind speed (Fig. 9a). Initially, the turbine is required to

operate at its rated power. Between t = 20s and t = 120s, the power set–point is reduced

to half the rated power, whereas the rate of change of the production power is limited to

±2MW/minute. Fig. 9b shows the evolution of the output power. It is observed that the

output power effectively tracks the reference (dotted line). Fig. 9c shows the pitch angle

response. It is corroborated that the pitch actuator does not suffer from excessive activity

despite the strong turbulence.

Delta control Fig. 10 shows the performance of the wind turbine controller in the delta

control mode of operation. In this case, the turbine is required to keep 1MW of power

reserve.

Fig. 10a displays the wind speed profile. Fig. 10b shows the evolution of the available

power, i.e. of the maximum power that can be captured by the turbine (dot–dashed

line), the reference power computed by the centralised wind farm controller (dashed) and

the output power Pg (solid line). It is observed that the output power closely follows its

reference, so that the turbine may eventually increase its production by 1MW at any time.

Finally, Fig. 10d shows the pitch angle response.

5 Conclusions

In this paper, we focused on the control of fixed–speed active stall wind turbines. The

pitch control system must be able to accomplish diverse tasks such as power production

maximisation, power balance, delta and gradient control. The control design task has been

addressed using concepts of gain scheduling and linear parameter–varying systems. In this

context, the controller design is formulated as an optimisation problem with LMIs, which is

solved using broadly available numerical algorithms. The proposed LPV design procedure

provides a powerful and simple tool to design controllers exhibiting robust performance

over the whole operating region. Simulations were carried out to assess the controller

performance under a realistic wind speed profile. The simulation results show the ability

of the controller to achieve power balance, gradient and delta control strategies without

excessive pitch activity.
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Tables

Table 1: Variables and parameters of the model referred to the low–speed side of the

system

Symbol Description

Ωr Speed of the wind rotor

Ωg Speed of the generator

θs Torsion angle of the transmission

Tr Aerodynamic torque developed on

the wind rotor

Tg Reaction torque of the generator

Jr Inertia of the wind rotor

Jg Inertia of the generator

Ks Stiffness of the transmission

Bs Damping of the transmission
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Figure Captions

Figure 1. Active stall wind turbine configuration

Figure 2. Conventional control strategy

Figure 3. Full range control strategy plotted onto the CP –curve

Figure 4. Intrinsic damping Br, and sensitivities kv and kβ for different power set–points:

100%PN (solid), 50%PN (dotted), 0%PN (dashed)

Figure 5. Model of the pitch angle actuator

Figure 6. Region P of all possible parameter values

Figure 7. (a) Power feedback control scheme. (b) Augmented plant for the controller

synthesis

Figure 8. Model uncertainty representation

Figure 9. Operation with power balance and gradient control

Figure 10. Operation with delta control
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