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Gain scheduling control of variable-speed

wind energy conversion systems using

quasi-LPV models.
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Abstract

The paper deals with the control of variable-speed wind energy conversion sys-
tems (WECS) in the context of linear parameter varying (LPV) systems, a recent
formulation of the classic gain scheduling technique. The LPV approach is specially
useful in variable-speed WECS control, which is characterized by nonlinear dynamic
behavior and opposite objectives. In particular, the following objectives are consid-
ered: conversion efficiency maximization, safe operation, resonant modes damping,
and robust stability. The proposed LPV controller is compared with a fixed con-
troller that also takes into account the nonlinear behavior of the wind turbine.

Key words:
Linear parameter varying systems, gain scheduling, wind energy conversion
system, wind turbines

1 Introduction

Nowadays, variable-speed wind energy conversion systems (WECS) are re-
ceiving considerable interest because they are able to maximize the energy
capture and to reduce the aerodynamic load for a wide range of wind speeds.
In variable-speed WECS, an electronic converter uncouples the rotational
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speed from the grid frequency, allowing the wind turbine to work at opti-
mal operating conditions at different wind speeds (???). Also, it is known
that WECS present nonlinear dynamic behavior and lightly damped resonant
modes. When the frequency range of the disturbances matches one of the res-
onant modes, the life of the turbine components is reduced, and the generated
power quality is deteriorated (??). Typical objectives are: to maximize energy
capture in low wind speed, to maintain the generated power and the rotational
turbine speed within safe limits during high wind speeds, and to avoid lightly
damped resonant modes in the closed loop system (??).

On the other hand, control techniques based on gain scheduling concepts are
extensively used in practical applications. The classic gain scheduling approach
consists in designing linear controllers for several operating points and then
applying an interpolation strategy to obtain a global control. Consequently,
powerful tools for linear systems can be applied to nonlinear plants. In spite
of the numerous applications, there was not a formal framework until the
beginning of the nineties (??). This framework gives heuristic rules to ensure
global stability, but it does not provide a systematic design procedure. Later,
? introduce the linear parameter varying (LPV) systems. In this context, the
synthesis problem can be formulated as a convex optimization problem with
linear matrix inequality (LMI) constraints wherein the controller is considered
as a simple entity without the classical interpolations drawbacks (????).

This paper deals with the modelling and control of variable-speed WECS using
the LPV gain scheduling approach. Analogously to linear optimal control, it
is possible to design a controller that considers the nonlinear nature of wind
turbines, aims to balance opposed objectives, and ensures stability with model
uncertainty.

This paper is structured as follows, Section 2 presents a brief summary of LPV
gain scheduling techniques. In Section 3 the dynamic equations of WECS are
deduced. Then, in Section 4, the problem specifications are discussed. Finally,
the proposed LPV gain scheduling controller is presented in Section 5.

2 LPV Gain Scheduling

Linear parameter varying (LPV) systems can be considered as a particular
case of linear time varying (LTV) systems where the matrices of the state
model are continuous and fixed functions of some varying parameter vector
θ(t) ∈ Rs. That is

ẋ(t)=A(θ(t))x(t) +B(θ(t))w(t), (1)
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z(t)=C(θ(t))x(t) +D(θ(t))w(t)

where x is the state (x ∈ Rn), w is the input, and z is the output. The
parameter vector θ(t) is not known a priori, but it is assumed in a bounded
set Θ ⊂ Rs.

If there exits a symmetric positive definite matrix P ∈ Rn×n such that




A(θ)TP+PA(θ) PB(θ) C(θ)T

B(θ)TP −γI D(θ)T

C(θ) D(θ) −γI



< 0 (2)

for any possible trajectory θ(t), the system (1) is exponentially stable, and it
can be assured that ‖z‖2 ≤ γ‖w‖2 ∀θ(t) ∈ Θ and γ > 0, γ ∈ R (??).

Given the open loop system

ẋ(t)=A(θ(t))x(t) +B1(θ(t))w(t) +B2(θ(t))u(t),

z(t)=C1(θ(t))x(t) +D11(θ(t))w(t) +D12(θ(t))u(t), (3)

y(t)=C2(θ(t))x(t) +D21(θ(t))w(t),

with the control input u and the measured output y, the LPV gain scheduling
synthesis problem consists in finding a controller

ẋk(t)=Ak(θ(t))xk(t) +Bk(θ(t))y(t), (4)

u(t)=Ck(θ(t))xk(t) +Dk(θ(t))y(t)

such that the closed loop system satisfies (2). Notice that although the pa-
rameter vector θ(t) must be measured in real-time, for the controller design
only the bounded set Θ is required.

This synthesis problem can be formulated as a convex optimization problem
with LMI constraints (????). Hence, a complete and systematic solution us-
ing the efficient interior point algorithms is achieved (?). In this context, ?
present the basic characterization to incorporate into the synthesis problem
multiple specifications such as H2/H∞ constraints and pole clustering. In the
same work, the authors consider parameter-dependent scalings to exploit the
structural information on the operator w → z.

The mathematical formulation required to synthesize the proposed controller
is summarized as follows. The plant (3) is considered with w and z subject to

[w1(t), . . . ,wm(t)]
T = ∆(t)[z1(t), . . . , zm(t)]

T
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where the operator ∆(t) has the following structure

∆ := diag(∆1(t), ...,∆m(t)), with σmax(∆(t)) ≤ 1/γ, ∀t ≥ 0.

Also, the following associated set of parameter-dependent scalings is defined

S∆ := {S : S > 0,S∆(t) = ∆(t)S, ∀t ≥ 0} .

Assuming that the parameter dependence of the plant (3) is affine , B2, C2,
D12, D21 are constant and Θ is a polytope with vertices θi, then, the controller
can be obtained by solving the following set of LMIs




XAi + B̂ki
C2 + (⋆) ⋆ ⋆ ⋆

ÂT
ki

+Ai +B2Dki
C2 AiY +B2Ĉki

+ (⋆) ⋆ ⋆

S−1
i (XB1i + B̂ki

D21)T S−1
i (B1i +B2Dki

D21)T −γS−1
i ⋆

C1i +D12Dki
C2 C1iY +D12Ĉki

(D11 +D12Dki
D21)S

−1
i −γS−1

i


< 0, (5)

[
X I

I Y

]
> 0 (6)

where X, Y, Âki, B̂ki, Ĉki, Dki and Si are the decision variables, and the
terms denoted ⋆ are induced by symmetry. Finally, the controller matrices are
computed with the following expressions

Aki =N−1(Âki −X(Ai −B2DkiC2)Y − B̂kiC2Y −XB2Ĉki)M
−T , (7)

Bki =N−1(B̂ki −XB2Dki), (8)

Cki =(Ĉki −DkiC2Y)M−T (9)

where M and N are obtained from solving I−XY = NMT .

Note that the synthesis problem with the scaling S(θ(t)) is not convex. Never-
theless, a computational procedure similar to the D-K iterations of µ-synthesis
can be applied (?).

Moreover, the resulting controllers may present unnecessarily fast modes (?),
that would complicate the implementation. To circumvent this problem, the
location of the closed loop poles of the underlying LTI system (at fixed θ) is
forced to lie in certain region D ∈ C by complementing the set of LMIs (5)-(6)
with


λjk



Y I

I X


 + µjk



AiY +B2Ĉki Ai +B2DkiC2

Âki XAi + B̂kiC2


+
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+ µkj



AiY +B2Ĉki Ai +B2DkiC2

Âki XAi + B̂kiC2




T


j,k

< 0 (10)

where λjk and µjk define the geometry of the region D (?).

3 System Description

3.1 Wind Turbine

For a wind turbine of radius R, the generated power and the mechanical torque
have the following expressions, respectively

Pa=
1

2
ρπR2Cp(λ)V

3, (11)

Qa =
1

2
ρπR3Cq(λ)V

2 (12)

where

V : wind speed,

λ : tip-speed ratio defined as Rω/V ,

ρ : air density,

ω : rotational speed of the wind turbine,

Cp(λ) : power coefficient defined as the ratio between the power captured
by the wind turbine and the available wind power, that is the tur-
bine efficiency to convert the kinetic energy of the wind into me-
chanical energy,

Cq(λ) : torque coefficient (Cq(λ) = Cp(λ)/λ).

The coefficient Cp(λ) presents a maximum at λ = λopt corresponding to max-
imum power generation.

Fig. 1 shows the aerodynamic torque as function of the rotational speed for
several wind speeds (solid line) and the locus of maximum power generation
corresponding to λ = λopt (dotted line).
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Figure 1. Aerodynamic torque for several wind speeds (solid line), and locus of
maximum power generation corresponding to λ = λopt (dotted line).

Figure 2. Variable-speed wind energy conversion system (WECS).

3.2 Dynamic model of the WECS

The WECS considered in this paper consist of a wind turbine, an induction
generator and an electronic converter (Fig. 2). The electronic converter con-
trols the generator torque so that the operating point can be set according
to the generation strategy. The gearbox adapts the rotational speeds of the
wind turbine and the electric generator. The system is connected to a stiff grid
that can absorb all power supplied by the wind turbine without considerable
change neither in voltage nor in frequency.

Usually, WECS are modelled as a series of inertias linked by flexible shafts
with friction (??). Nevertheless, it must be stressed that wind turbines are
flexible systems and, when are modelled through concentrated parameters,
the elements of the model do not necessarily have direct correspondence with
the physical elements of the system.

A model with a single dominant resonant mode is considered (Fig. 3). Then,
the WECS dynamics equations are
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Figure 3. Mechanical model of the WECS.

Jtω̇=Qa −Q, (13)

Jgω̇g =Q−Qg, (14)

Q̇=Ks(ω − ωg) +Bs(ω̇ − ω̇g) (15)

where Jt and Jg are the moments of inertia of the wind turbine and the gen-
erator respectively, Ks is the stiffness coefficient, Bs is the friction coefficient,
and ωg is the generator shaft speed (all parameters are referred to the tur-
bine side). Note that the equations (13)-(15) are not linear due to the highly
nonlinear expression of Qa (12).

Under the reasonable assumption that the mechanical dynamics is dominant
compared with the electric one, the steady state model of the generator is
adequate for torque calculation. Moreover, since the slip is small, the generator
torque Qg can be considered linear in ωg:

Qg = Qg1ωg +Qg2ωs (16)

where

Qg1 =
3

Rr

[
Vf · n
ωs

]2
, Qg2 =

3n

Rr

[
Vf

ωs

]2
, ωs =

2πf

p
,

Rr is the rotor resistance, Vf is the stator voltage, n is the gearbox ratio which
is assumed ideal (constant and without dynamics), f is the frequency and p
is the number of pairs of poles.

3.3 Cyclic disturbances

Due to the non-uniformity of the wind speed in the area swept by the wind
turbine, the aerodynamic torque presents oscillatory components known as
cyclic disturbances. There are several causes of these wind speed variations
such as: wind shear caused by wind speed variations over the rotor height,
tower shadow caused by the support structure interfering with the air flow,
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Figure 4. Set of operating points for a variable-speed WECS, superimposed to
the aerodynamic torque for several wind speeds. 1-constant λopt region, 2-constant
power region, and 3-constant ω region.

and yaw misalignment caused by the alignment error between the turbine
shaft and the wind speed direction. In all cases, the cyclic disturbances, for a
wind turbine of N blades, can be modelled as oscillatory components of the
wind speed with harmonics in multiples of Nω (?).

4 Control objectives

Commonly, the control objectives for a variable-speed WECS are (??):

- To maintain the turbine in a set of operating points depending on the wind
speed (??). At low speeds, λmust be maintained at its optimal value to max-
imize the conversion efficiency. On the other hand, at high wind speeds, the
generated power should not exceed the nominal power. Additionally, to pre-
vent large torque and power peaks, the turbine speed has to be maintained
at constant speed between low and high wind speed regions. Fig. 4 shows
a typical set of operating points according to the three mentioned regions.
Usually, this objective is achieved by reference tracking. In this work it is
adopted a speed reference ωref computed from the wind speed (???).

- To avoid lightly damped resonant modes in the closed system that can be
excited by cyclic disturbances or wind turbulence. In this situation, the
torque oscillation are incremented, and hence the useful life of the wind
turbine may be reduced. Moreover, several components may suffer consid-
erable damage. The problem is made worse in variable speed WECS because
the harmonic components change with the turbine speed.
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Figure 5. Block diagram for damping increment strategy.

Optimization techniques can provide a trade-off between the aforementioned
objectives. However, the second requirement is not easy to fulfill. An indirect
way, proposed by ?, consists in modifying the slope of the incremental gener-
ator torque characteristic. Indeed, if a feedback gain kβ is used as in Fig. 5
where

kβ =
Qg1 − β

Qg2

, (17)

then the generator torque results

Qg = βωg +Qg2u. (18)

Fig. 6 shows the frequency response of the transfers V → Q and ωref → e
(e = ωref − ωg) corresponding to the linearized system at one operating point
for several values of kβ and K = 1/s. It can be observed that there exists one
value of kβ in which the damping is maximum whereas for smaller and larger
values of kβ the transfer V → Q presents resonant peaks.

Despite their outstanding contributions, this strategy does not guarantee ro-
bustness. Effectively, stability and performance are only assured at the design
operating point and for a good model. Unfortunately, due to the complexity of
WECS is very difficult to have an exact model, specially at high frequencies.

5 LPV Gain-scheduling strategy

5.1 Quasi-LPV model of the WESC

The model given by the equations (13)-(15) can be expressed as

ẋ = Ax+Bu+ f(x1, V ) (19)

where

9
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Figure 6. 1-Transfer V → Q, 2-transfer ωref → e corresponding to the block diagram
in Fig. 5 for several values of β and K = 1/s. The kβ = Qg1 transfers is indicated
with dashed line.

A=




0 0 −1/Jt

0 −Qg1/Jg 1/Jg

Ks (BsQg1/Jg −Ks) −Bs(1/Jt + 1/Jg)



,

BT =
[
0 −Qg2/Jg BsQg2/Jg

]
,

fT (x1, V )=
[
Qa(x1, V )/Jt 0 BsQa(x1, V )/Jt

]
.

Then, if there exist three differentiable functions (x2e, x3e, ue) such that

A




x1

x2e

x3e



+Bue + f(x1, V ) = 0, (20)

by applying the states transformations proposed by ? the WECS can be rep-
resented as a LPV model. Certainly, with these three functions, the states and
the control inputs are redefined in the following way.

ξ1=x1 = ω, (21)

ξ2=x2 − x2e = ωg − ω, (22)

ξ3=x3 − x3e = Q−Qa(x1, V ), (23)
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µ=u− ue = ωs − (Qa(x1, V )−Qg1x1)/Qg2. (24)

Unfortunately, exact measurements of both x1 and V are not possible. Actu-
ally, the turbine speed is an inaccessible variable, and it must be estimated
from ωg. On the other hand, the measured wind speed V is an average variable
without information on cyclic disturbances 4 . Consequently, the bias term ue

(ue(ω, V ) = (Qa(x1, V )−Qg1x1)/Qg2) can not be correctly computed, and the
performance will be deteriorated since the resultant error is a disturbance at
the control input.

Clearly, this problem disappears if the bias term ue is removed from (24). To
this end, consider the nonlinear system (13)-(15) with an integral action at
the input ωs. Now, the states and matrices in (19) are

xT =
[
ω ωg Q ωs

]
,

A=




0 0 −1/Jt 0

0 −Qg1/Jg 1/Jg Qg2/Jg

Ks (BsQg1/Jg −Ks) −Bs(1/Jt + 1/Jg) BsQg2/Jg

0 0 0 0




,

BT =
[
0 0 0 1

]
,

f(x1, V )T =
[
Qa(x1, V )/Jt 0 BsQa(x1, V )/Jt 0

]
.

Then, applying the previous transformation, the new states result

ξ1=x1 = ω, (25)

ξ2=x2 − x2e = ωg − ω, (26)

ξ3=x3 − x3e = Q−Qa, (27)

ξ4=x4 − x4e = ωs − (Qa −Qg1x1)/Qg2. (28)

where the control input is the integrator input and the bias term ue effectively
becomes zero.

Finally, the quasi-LPV model is

4 The cyclic disturbances are modeled as a wind component; however, they are
actually caused by the turbine itself.
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ξ̇= Â(θ) ξ + B̂(θ)



V̇

µ


 , (29)

z= Ĉ1 ξ,

y= Ĉ2 ξ,

with

θ=
[
ωg V

]T
,

Â=




0 0 −1/Jt 0

0 −Qg1/Jg (1/Jg + 1/Jt) −Qg1/Jg

0 (BsQq1/Jg −Ks) (−Bs(1/Jg + 1/Jt) + 2q2θ1/Jt + q1θ2/Jt) BsQg2/Jg

0 0 (2q2θ1 + q1θ2 −Qg1)/Qg2Jt 0




,

B̂=




0 0

0 0

−q1θ1 − 2q0θ2 0

(−q1θ1 − 2q0θ2)/Qg2 1




,

Ĉ1=
[
0 (−Ks +BsQg1/Jg) −Bs(1/Jg + 1/Jt) BsQg2/Jg

]
,

Ĉ2=
[
1 1 0 0

]
,

where the aerodynamic torque is considered as

Qa = q2ω
2 + q1ωV + q0V

2. (30)

The coefficients q2, q1, and q0 come from the following polynomial approxima-
tion

Cq = c2λ
2 + c1λ+ c0. (31)

Note that the functions x2e, x3e, and x4e, which satisfy (20), correspond to the
equilibrium points expressed as functions of the state x1 and the external signal
V . That is, the new states represent deviations with respect to the equilibrium
points. However, this is not a classical linearization, and the equation (29)
exactly represents the nonlinear system (19). In this situation, where some of
the parameter are states, the model is named as quasi-LPV. Also, it can be
observed that the wind speed derivative in (29) is not a problem because it
can be considered as a disturbance.
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Figure 7. Possible parameter trajectories and polytope Θ.

Fig. 7 shows the selected polytope Θ on the parameter space ω − V and the
operating points of Fig. 4 (curve a in Fig. 7). It is possible to synthesize the
controller over the trajectory a, however synthesis in the convex region Θ is
considerably simpler, and other trajectories as b and c can also be tracked (?).

It is interesting to observe that LPV gain scheduling approach assures stability
and performance for all closed loop systems in Θ. Therefore, if the magnitude
of the mentioned parameter errors are such that the resulting closed loop
systems remain within Θ, then the stability and performance are maintained.

5.2 Controller design

In this subsection, Novak’s approach (?) is conceptually improved in a more
robust context. More specifically, the controller K and the gain kβ in Fig. 5
are replaced by a LPV controller. Then, using the concepts summarized in
Section 2, a strategy that fulfills the control objectives in every point within
the polytope Θ is obtained.

The setup of the LPV gain scheduling synthesis problem is similar to one of
H∞ optimal control. The plant is augmented with weighting functions that
introduce the objectives into the problem. Fig. 8 shows a block diagram of the
augmented plant with the following functions

M(s)=
10s+ 1

s
, (32)

We(s)=
0.5

10s+ 1
, (33)

Wq(s)=
s

20(s+ 10)
, (34)
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Figure 8. Block diagram of the augmented plant.

Wp(s)=
5s

s+ 2500
. (35)

The weighting functions M(s) and We(s) consider the generation objective,
that is the tracking of speed reference ωref . M(s)We(s) forces the steady state
error to zero, allowing a larger error at high frequencies. Note that good track-
ing at high frequencies is not recommended because it increases the dynamic
load. On the other hand, the weighting function Wq(s) stresses the frequency
range near the resonant modes to increment damping. Finally, the function
Wp(s) considers the high frequency uncertainty where the goal is to restrict
the closed loop bandwidth.

Once the problem setup has been completed, the controller is obtained by
solving the set of LMIs indicated in Section 2. The eigenvalues of the closed
loop matrices Acli are confined to the region Re(s) ≥ −104, avoiding the exces-
sive fast modes of the controller that may appear in this synthesis procedure.
Besides, a parameter dependent scaling with diag(s1, s2, s3) structure is con-
sidered, given that the objectives consist in minimizing the infinite norm of
the operators u∆ → y∆, ωref → e and V̇ → Q̇.

The performance of the proposed LPV controller will be compared with a
fixed H∞ controller. For the H∞ design, the parameter vector is considered
uncertain, and the affine LPV model (29) is converted to the LFT form (see,
for example, ?). The augmented plant and the weighting functions are the
same than the ones of LPV case.

Fig. 9 shows the simulation of the nonlinear closed loop system when a wind
speed test signal is applied, and the speed reference is computed according
to trajectory a in Fig. 7. The selected test signal covers the three operating
regions with a rise time in agreement with the maximum bandwidth of the
wind speed measurement. Although this signal is not real, the goal is to test
the controller performance in an extremely demanding situation. In Fig. 9, the
thin line corresponds to the system with the H∞ controller and the thick line
to the LPV controller. Notice that the latter presents better reference tracking
than the former.
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Figure 9. Closed loop simulations with H∞ controller (thin line) and with LPV
controller (thick line). 1-Wind speed test signal V , 2-turbine speed reference ωref

according to trajectory a, 3-speed error e = ωref − ωg.

Fig. 10 presents closed loop simulations using a realistic wind speed profile
with mean 7.5m/s. In this situation, the wind speed is in the optimal tracking
region, and thus the speed reference is computed from λoptV/R (3.5 rad/s,
in this example). At this turbine speed, the cyclic disturbances of frequency
Nω excite the resonant mode at 6.7 rad/s (N = 2 for the present example).
In the top plot in Fig. 10, the thick and the dashed lines correspond to the
measured wind speed V and the actual wind speed, respectively. In the other
plots, the thick lines correspond to the system with the LPV controller while
the thin ones are the responses with the H∞ control. It can be observed that
the magnitudes of the speed error and the torque oscillations are considerably
smaller in the LPV case.

The smaller torque oscillation in the LPV case is in agreement with the fre-
quency responses of the operator V → Q, at fixed θ, presented in Fig. 11.
Observe that while the LPV controller (thick line) reduces the resonant peak,
the transfers V → Q corresponding to H∞ control (thin line) and open loop
(dotted line) are almost coincident.

Clearly, the LPV controller presents better tracking and more damping of
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resonant modes because its ability to adapt itself to the wind conditions. Spe-
cially, this last objective is rather difficult to satisfy. Consequently, only the
LPV controller, which is less conservative, is able to achieve a more consider-
able reduction of the oscillations with regard to the open loop system.

6 Conclusion

In this paper, a LPV gain scheduling strategy for variable-speed WECS has
been proposed. This control achieves maximization of the conversion efficiency,
safe operation and reduction of the torque oscillations whereas it considers
high frequency uncertainty. In particular, the damping increment concept is
used to improve the reduction of the torque oscillations.

Due to the nonlinear nature of variable-speed WECS and their wide operating
range, controllers that are valid in all operating points are excessively conser-
vative. Then, to obtain less conservative strategies is an important point in the
variable-speed WECS control. In this sense, the proposed LPV control is very
promising since it combines a design procedure similar to H∞ control with the
adaptability of gain scheduling. Equally important, it is the system formula-
tion as a convex optimization problem with LMIs that allows the incorporation
of additional constraints as pole clustering to simplify the implementation.
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A Appendix

Parameters corresponding to the 400kW WECS used in the simulations
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N = 2,

R = 17.5m,

Jt = 160Tm2,

Jg = 70Tm2,

Bs = 50Tm2/s,

Ks = 7500Tm2/s2.
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