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Control of variable-speed wind turbines

by LPV gain scheduling

F.D.Bianchi
∗

R.J.Mantz
†

C.F.Christiansen
‡

Abstract

This paper considers gain scheduling control of variable-speed wind energy con-

version systems (WECS) in the context of linear parameter varying systems. The

typical problems of the classic gain scheduling techniques, such as stability guaran-

tees, undesirable transient responses in the controllers commutations and arduous

design procedures, can be avoided with this new formulation. A model of a variable-

speed WECS expressed in the LPV form and an optimal LPV gain scheduling control

strategy are presented.

Keywords: Linear parameter-varying systems, gain scheduling, wind energy conver-

sion systems, wind turbines.

1 Introduction

Better conversion efficiency and less dynamic loads are two commonly cited advantages of

variable-speed wind energy conversion systems (WECS). However, these advantages only

become evident with a suitable control strategy [1, 2]. Also, it is known that variable-speed

WECS present nonlinear dynamic behavior [3]. Among the control strategies for nonlinear

systems, gain scheduling techniques are used in many wind turbine controls [4, 5].

An interesting feature of gain scheduling techniques is their ability to apply powerful

linear tools to nonlinear systems. In these approaches, the system is linearized in several
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operating points, and then a linear controller is designed for each linearized system. In

between the selected operating points, the corresponding linear controller is obtained by

interpolation, resulting in a global control. The linear controller applied at a particular

operating point is established by the termed scheduling variables measured in real-time.

In spite of their extended use, classic gain scheduling techniques only assure perfor-

mance and stability at each operating point where the linear controllers are designed [6].

Besides, the design of the set of linear controllers and later interpolation stage may be a

very arduous task. Linear Parameter Varying (LPV) systems proposed by Shamma and

Athans [6] can avoid the mentioned difficulties. These systems can be considered as a par-

ticular case of Linear Time Varying (LTV) systems where the matrices of the state model

are continuous and fixed functions of the scheduling variable or parameter θ(t) which are

assumed in a bounded set Θ [7].

Recent LPV gain scheduling approaches present three interesting features. First, the

controller is considered as an entity. That is, only one controller is designed, and the

interpolation stage is avoided. Second, the resulting controller guarantees stability and

performance even though the scheduling variables are changing quickly. And third, optimal

controllers can be obtained solving a convex optimization problem [7, 8] with efficient

computer packages [9, 10].

This paper deals with the control of variable-speed WECS in the context of LPV

systems. In particular, an optimal LPV gain scheduling strategy, which achieves a com-

promise between conversion efficiency and dynamic loads, is presented.

2 LPV model for WECS

2.1 System description

The WECS considered in this work consists of a wind turbine, an induction generator, and

an electronic converter. This last one controls the generator torque, allowing variable-speed

operation. A gearbox adapts the rotational speeds of the wind turbine and the electric

generator. The system is connected to a stiff grid that can absorb all the power supplied

by the wind turbine without considerable change neither in voltage nor in frequency.

It is considered a wind turbine with only one dominant resonant mode, modelled as
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a series of inertias linked by flexible shafts with friction [11]. In this case, the dynamic

equations for the WECS result

Jtω̇ = Qa − Q, (1)

Q̇ = Ks(ω − ωg) + Bs(ω̇ − ω̇g), (2)

Jgω̇g = Q − Qg (3)

where Jt and Jg are the moments of inertia of the wind turbine and the generator respec-

tively, Ks is the stiffness coefficient, Bs is the friction coefficient, Q is the shaft torque, ω

is the rotational turbine speed, and ωg is the generator speed (all parameters are assumed

on the turbine side).

The aerodynamic torque Qa has the following expression

Qa =
1

2
ρπR3Cq(λ)V 2 (4)

where ρ is the air density, R is the turbine radio, V is the wind speed, λ is the tip-speed

ratio defined as Rω/V , and Cq(λ) is the torque coefficient.

Assuming small slip and constant voltage-frequency relationship, the generator torque

Qg is linear in ωg

Qg = Qg1ωg + Qg2ωs (5)

where Qg1 and Qg2 are the linearization constants.

2.2 LPV model

Usually, the torque coefficient is only known in some values of λ. Even so, an expression can

be obtained if Cq(λ) is approximated in the operating region by a second order polynomial

[11]

Cq = c2λ
2 + c1λ + c0. (6)

Then, using the previous approximation and linearizing (4) at a generic operating point

defined by the mean wind speed vm and the mean turbine speed ωm, the aerodynamic

torque results

Qa = a(vm, ωm) ω̂ + b(vm, ωm) v̂ (7)
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where

ω̂ = ω − ωm,

v̂ = V − vm,

a(vm, ωm) =
∂Qa

∂ω

∣

∣

∣

∣

vm,ωm

=
πρR4c1

2
vm + πρR5c2 ωm,

b(vm, ωm) =
∂Qa

∂v

∣

∣

∣

∣

vm,ωm

= πρR3c0 vm +
πρR4c1

2
ωm.

Finally, replacing Qa in (1) with (7), the WECS is expressed in the LPV form

ẋ = A(θ) x + B(θ) u, (8)

y = C(θ) x

where

xT =
[

ω̂ Q ωg

]

, uT =
[

v ωs

]

, θT =
[

vm ωm

]

,

A =











a(vm, ωm)/Jt −1/Jt 0

(Ks + Bsa(vm, ωm)/Jt) −Bs(1/Jt + 1/Jg) (BsQg1/Jg − Ks)

0 1/Jg −Qg1/Jg











,

B =











b(vm, ωm)/Jt 0

Bsb(vm, ωm)/Jt (BsQg2/Jg)

0 −Qg2/Jg











, C =





0 1 0

0 0 1



 .

In this model, the parameters are the mean wind speed vm and the mean turbine speed

ωm. Both variables must be measured to update the controller. However, ωm is not an

accessible variable, so the mean generator speed ωgm is used instead. Note that ωm and

ωgm are coincident since they are steady state values. Also, it is important to observe that

A(·) and B(·) are affine functions of the parameters vm and ωgm.

Fig. 1 shows the bounded set Θ (shaded sector) considered in this work to cover all

possible values of vm and ωgm. The set Θ includes three classic operating regions such

as: low wind speed where λ is kept at the optimal value to maximize the conversion

efficiency, high wind speed where the generated power is kept below its nominal value,

and a intermediate region where ωmg is kept constant to avoid large torque and power
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peaks. The solid line a, in Fig. 1, corresponds to the trajectory of the operating points

in the three regions. The same Θ covers other alternative trajectories that join the low

and high wind speed regions in a smooth way to reduce, even more, the aforementioned

torque and power peaks. These trajectories are indicated with b and c in Fig. 1 [1, 2].

It should be noted that Θ covers not only the mentioned trajectories but also other

operating points outside the trajectories. Although this Θ may lead to little conservative

controllers, this choice simplifies considerably the design and the resulting controller.

3 Controller design and simulation results

In LPV gain scheduling approach, the design procedure consists in finding a controller

K(θ(t)):

ẋk = Ak(θ)xk + Bk(θ)ωs,

ωg = Ck(θ)xk + Dk(θ)ωs

such that

‖z‖2 =

∫ ∞

−∞

z(t)T z(t)dt

is minimized when ‖w‖2 < 1 where w is the input and z is the output of the closed loop

system. Usually, each output zi is weighted with a transfer, named weighting function,

that stresses the frequency range where zi must be minimized. A suitable choice of these

weighting function allows a compromise among the objectives expressed by the signals zi.

In the case of the considered WECS control, two common objectives are:

1. maximize the conversion efficiency and keep the generated power and the turbine

speed below safe limits, in agreement with the wind speed. That is, the wind turbine

must work in a trajectory such as a, b, or c in Fig. 1. Hence, this objective can be

implemented as a speed reference tracking where the reference ωref is computed

according to one of the mentioned trajectories,

2. avoid lightly damped resonant modes in the closed loop system that may be excited

by cyclic disturbances or wind turbulence.

Then, the first step in the controller design is to express the previous objectives as

signals zi that must be minimized. The first objective corresponds to minimize the speed
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error e = ωref − ωg when the input is ωref , and the second corresponds to minimize Q

when the input is v̂. Thus, it is defined

z =
[

e Q
]T

,

w =
[

ωref v̂
]T

.

The feedback diagram with the selected weighting function, named augmented plant, can

be establish as it is shown in Fig. 2 where P (θ(t)) is the LPV model of the WECS. The

frequency response of the weighting functions MWe(s)
1 and Wq(s) are presented in Fig. 3.

The weight MWe(s) forces steady state error to zero and allows a higher error in high

frequency. That is, MWe(s) aims to achieve a good reference tracking in low frequency.

On the other hand, the weighting function Wq(s) stresses the high frequency range to

avoid the lightly damping resonant modes.

Once the feedback diagram and the weighting functions are defined, the controller

is designed using any of the available computer packages [9, 10]. Because the matrices

A(·), B(·), and C(·) are affine functions of θ, and the bounded set Θ is a polygon with

three vertices θ1, θ2, and θ3, the resulting controller consists of three set of matrices

{Aki, Bki, Cki, Dki} corresponding to each vertex of Θ [7]. Then, the control algorithm

can be summarized in the following steps

1. In the instant t, measure the scheduling variables θ(t), and compute αi such that

θ(t) =
3

∑

i=1

αi(t)θi, with
3

∑

i=1

αi(t) = 1, αi ∈ R, αi > 0. (9)

2. With the αi and the {Aki, Bki, Cki, Dki}, compute the controller matrices from




Ak(θ(t)) Bk(θ(t))

Ck(θ(t)) Dk(θ(t))



 =
3

∑

i=1

αi(t)





Aki Bki

Cki Dki



 . (10)

3. Finally, in the instant t, (10) corresponds to the differential equation of a LTI system.

Therefore, using any methods for linear controller, compute the control signal ωs.

The performance achieved by the controller can be observed in the following simulations

corresponding to the test signals shown in Fig. 4. The selected wind transitions present

1The decomposition in M and We is necessary to satisfy controllability and observability conditions

[12]
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different rise time to evaluate the system behavior when it is subjected to several change

rates of wind speed.

Fig. 5 and 6 present the reference signal ωref and the speed error e. In Fig. 5 the

simulations correspond to the test signals when the reference is computed according to

trajectory b in Fig. 1. On the other hand, Fig. 6 shows the response for trajectories a, b,

and c when the test signal is 2 in Fig. 4. It can be observed that in all cases the speed

error is considerably small. Obviously, the tracking improves when the references become

smoother because the large inertias of the system. Note also that the test signals cover

the complete wind speed range and that the operating point of the system varies across

Θ.

Fig. 7 presents a simulation corresponding to a realer wind profile. The mean wind

speed is near 8.8 m/s, and the turbine speed is close to 4 rad/s, which produces cyclic

disturbances that excite the resonant modes at 12 rad/s. In Fig. 7 are shown two responses

of the closed loop system with controllers designed using different weight at Q. The

thick line and the thin line correspond to Wq(s) in Fig. 3 and without constraint in Q,

respectively. It is possible to observe the important reduction of the oscillations that can

be achieved.

4 Conclusions

In this paper, the control of variable-speed WECS have been considered in the context

of LPV systems, a recent reformulation of the classic gain scheduling problem. Owing to

the WECS is expressed as an affine LPV model, and all possible values of the scheduling

variables are included in a polygon with three vertices, the proposed controller results in

a linear combination of three constant controllers. The typical commutation problems of

classic gain scheduling approaches are avoided since the controller is continuously adapted

to change in the system dynamics with performance and stability guarantees. These facts

with the availability of efficient algorithm to design optimal controllers make the LPV

control a very promising approach to use with more complicate models and constraints.
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A Appendix

Parameters corresponding to the 400 kW WECS used in the simulations

N = 3,

R = 17.5 m,

Jt = 160 Tm2,

Jg = 70 Tm2,

Bs = 50 Tm2/s,

Ks = 7500 Tm2/s2.
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Figure Captions

Figure 1. Parameter vector trajectories θ(t) and bounded set Θ.

Figure 2. Block diagram of the augmented plant.

Figure 3. Weighting functions.

Figure 4. Test wind speed signals used in the simulations.

Figure 5. Reference and speed error corresponding to the four test signal in Fig. 4 and

the trajectory b in Fig. 1.

Figure 6. Reference and speed error corresponding to the trajectories a, b, and c in Fig. 1

and the test signal 2 in Fig. 4.

Figure 7. Shaft torque for the closed loop system with controllers designed using Wq(s)

in Fig. 3 (thick line) and without constraint at Q (thin line).
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Figure 1: Parameter vector trajectories θ(t) and bounded set Θ.
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Figure 2: Block diagram of the augmented plant.
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Figure 4: Test wind speed signals used in the simulations.
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Figure 5: Reference and speed error corresponding to the four test signal in Fig. 4 and

the trajectory b in Fig. 1.
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Figure 6: Reference and speed error corresponding to the trajectories a, b, and c in Fig. 1

and the test signal 2 in Fig. 4.
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Figure 7: Shaft torque for the closed loop system with controllers designed using Wq(s)

in Fig. 3 (thick line) and without constraint at Q (thin line).
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